K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{4a^2+2ab+2ac+bc}=\dfrac{a^2}{2a\left(a+b+c\right)+\left(2a^2+bc\right)}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Suy ra BĐT cần chứng minh viết lại như sau:

\(\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ca}+\dfrac{c^2}{2c^2+ab}\le\dfrac{\dfrac{1}{3}}{\dfrac{1}{9}}-2=1\)

\(\Leftrightarrow\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ca}+\dfrac{2c^2}{2c^2+ab}\le2\)

\(\Leftrightarrow\left(1-\dfrac{2a^2}{2a^2+bc}\right)+\left(1-\dfrac{2b^2}{2b^2+ca}\right)+\left(1-\dfrac{2c^2}{2c^2+ab}\right)\ge1\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge1\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{bc}{bc+2a^2}=\dfrac{b^2c^2}{b^2c^2+2a^2bc}\ge\dfrac{b^2c^2}{b^2c^2+a^2\left(b^2+c^2\right)}=\dfrac{b^2c^2}{a^2b^2+b^2c^2+a^2c^2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{ca}{2b^2+ca}\ge\dfrac{c^2a^2}{a^2b^2+b^2c^2+c^2a^2};\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2}{a^2b^2+b^2c^2+c^2a^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2+b^2c^2+c^2a^2}=1\)

Vậy BĐT cuối đúng hay ta có ĐPCM

17 tháng 8 2018

@Akai Haruma @Vũ Tiền Châu @Phùng Khánh Linh

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Hai vế không đồng bậc, không có điều kiện hay phụ số, bạn xem lại đề.

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Dấu >= hay <= vậy bạn? Bạn xem lại đề.

26 tháng 5 2023

>= ạ

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

16 tháng 4 2017

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

16 tháng 4 2017

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

11 tháng 10 2018

Áp dụng BĐT Cô-si cho các số dương ta có:

(2a+b+c)2 = \(\left[\left(a+b\right)+\left(a+c\right)\right]^2\) \(\ge\) 4(a+b)(a+c)

\(\Rightarrow\) \(\dfrac{1}{\left(2a+b+c\right)^2}\) \(\le\) \(\dfrac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự : \(\dfrac{1}{\left(2b+c+a\right)^2}\) \(\le\) \(\dfrac{1}{4\left(b+c\right)\left(b+a\right)}\)

\(\dfrac{1}{\left(2c+a+b\right)^2}\) \(\le\) \(\dfrac{1}{4\left(c+b\right)\left(c+a\right)}\)

Cộng theo vế 3 đẳng thức trên

\(\dfrac{1}{\left(2a+b+c\right)^2}\)+\(\dfrac{1}{\left(2b+c+a\right)^2}\)+\(\dfrac{1}{\left(2c+a+b\right)^2}\) \(\le\)\(\dfrac{1}{4}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(b+c\right)\left(b+a\right)}+\dfrac{1}{\left(c+b\right)\left(c+a\right)}\right)\)

=\(\dfrac{1}{4}\left(\dfrac{b+c+a+b+c+a}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\right)\)

=\(\dfrac{1}{2}\left(\dfrac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

Áp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\) P \(\le\) \(\dfrac{a+b+c}{16abc}\) = \(\dfrac{1}{16}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) \(\le16\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\) = \(\dfrac{3}{16}\)

\(\Rightarrow\) Pmax = \(\dfrac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\) a = b = c = 1

Vậy Pmax = \(\dfrac{3}{16}\) \(\Leftrightarrow\) a = b = c = 1