\(x^2-2mx+2010.2011=0\) không có nghiệm nguyên với mọi m thuộc Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

Theo định lý Vi - et, ta có:

  • $x_1 + x_2 = 2m \, (1)$
  • $x_1.x_2 = 2010.2011 \, (2)$

Giả sử phương trình đó có nghiệm nguyên.

- Vì $m \in Z$ nên từ (1), suy ra: $x_1$ và $x_2$ cùng chẵn hoặc cùng lẻ. (Nói đúng hơn là cùng có dạng 2k hoặc 2k + 1).

- Mặt khác: $x_1.x_2 = 2010.2011$ nên suy ra, hai nghiệm này cùng chẵn.

Vì vậy: $x_1.x_2 $ $\vdots$ $4$. Mà $2011.2010$ $\not \vdots$ $4$.

Vậy, điều giả sử là sai. Tức là phương trình ban đầu không có nghiệm nguyên.

17 tháng 12 2017

Khi \(m=1\Rightarrow x^2-2x-3=0\)

                   \(\Leftrightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

16 tháng 4 2019

c, Với x\(_1\) = 2x\(_2\) thì :

x\(_1\) + x\(_2\) = 2m \(\Leftrightarrow\) 2x\(_2\) + x\(_2\) = 2m \(\Leftrightarrow\) x\(_2\) = \(\frac{2m}{3}\) \(\Rightarrow\) x\(_1\) = 2x\(_2\) = \(\frac{4m}{3}\)

Mà x\(_1\)x\(_2\) = 2m - 1

\(\Leftrightarrow\) \(\frac{4m}{3}\) * \(\frac{2m}{3}\) = 2m - 1 \(\Leftrightarrow\) \(\frac{8m^2}{9}\) = 2m - 1 \(\Leftrightarrow\) 8m\(^2\) = 18m - 9 \(\Leftrightarrow\) 8m\(^2\) - 18m + 9 = 0 (2) \(\Delta\)' = 9\(^2\) - 8*9 = 9 > 0 Vì \(\Delta\)' > 0 nên phương trình (2) có 2 nghiệm phân biệt : m\(_3\) = \(\frac{9+\sqrt{9}}{8}\) = 3/2 m\(_4\) = \(\frac{9-\sqrt{9}}{8}\) = 3/4 Vậy khi m = 3/2 hoặc m = 3/4 thì phương trình ban đầu luôn có 2 nghiệm x\(_1\), x\(_2\) thỏa mãn : x\(_1\)=2x\(_2\)

16 tháng 4 2019

Phương trình : x\(^2\) - 2mx + 2m - 1 = 0 (*)

a, phương trình (*) có : \(\Delta\)' = (-m)\(^2\) - 1*(2m - 1 )

= m\(^2\) - 2m + 1

= (m-1)\(^2\) (luôn \(\ge\) 0 với mọi m)

Do đó phương trình (*) luôn có nghiệm với mọi m

b, Áp dụng hệ thức Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-1\end{matrix}\right.\)

Ta có :

A = 2(x\(_1\)\(^2\) + x\(_2\)\(^2\) ) - 5x\(_1\)x\(_2\)

= 2*[(x\(_1\)+x\(_2\))\(^2\) - 2x\(_1\)x\(_2\)] - 5x\(_1\)x\(_2\)

= 2*(x\(_1\)+x\(_2\))\(^2\) - 4x\(_1\)x\(_2\) - 5x\(_1\)x\(_2\)

= 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\)

Vậy A = 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\)

Mà A = 27

\(\Leftrightarrow\) 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\) = 27

\(\Leftrightarrow\) 2*(2m)\(^2\) - 9*(2m-1) = 27

\(\Leftrightarrow\) 8m\(^2\) - 18m + 9 = 27

\(\Leftrightarrow\) 8m\(^2\) - 18m - 18 = 0 (1)

\(\Delta\)' = 9\(^2\) - 8*(-18) = 225 > 0

\(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{225}\) = 15

\(\Delta\)' > 0 nên phương trình (1) có 2 nghiệm phân biệt

m\(_1\)= \(\frac{9+15}{8}\) = 3

m\(_2\)= \(\frac{9-15}{8}\) = \(\frac{-3}{4}\)

Vậy với m = 3 hoặc m = -3/4 thì A = 27

9 tháng 7 2016

Nghiệm nguyên x;y;z hay nghiệm nguyên n thế?

Có lời giải ở đây:wiles.pdf

Nếu đọc mà hiểu được có có phần thưởng rồi cơ, không cần phải giải được!

16 tháng 5 2017

a/ Chứng mính 2 nghiệm phân biệt thì \(\Delta>0\)

b/ Dùng định lí vi-ét là ra nha bạn