Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(0< \frac{1}{5}< 1\)
\(1< \frac{1}{5}>\frac{1}{6}>.....>\frac{1}{17}>0\)
Viết lại :
\(2>\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{17}>1>0\)
Mik ko biết có đúng ko
Ta có:\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(1\right)\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(2\right)\)
Từ (1) và (2) ta được \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(đpcm\right)\)
Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...\frac{1}{100^2}\)
Ta có :
\(A< \frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+...+\frac{1}{99\times100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Ta có :
\(A>\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{100\times101}\)
\(\Leftrightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{100}>\frac{1}{6}\)
Vậy \(\frac{1}{6}< A< \frac{1}{4}\left(đpcm\right)\)
1/5-1/7+1/17-1/331+1/65-1/127=0,01(sấp sỉ)
Vì kết quả trên nên ta kết luận:
biểu thức trên bé hơn 10
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
Áp dụng công thức \(\frac{1}{a+1}+\frac{1}{a}< 1\)
\(\frac{1}{5}+\frac{1}{6}< 1;\frac{1}{6}+\frac{1}{7}< 1;...;\frac{1}{16}+\frac{1}{17}< 1\)
ta có: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 1-\frac{1}{17}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 1\)
mà 1<2
\(\Rightarrow\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 2\)
tham khảo nha bn!