K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

bn thử lấy  vd xem no mk nghĩ chắc điều ngược lại phải công cả số nguyên hoặc số hữu tỉ nữa

kb nha

7 tháng 10 2017

ừm

thanks!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

12 tháng 3 2019

1/

\(\left(x+2y\right)⋮5\Rightarrow3\left(x+2y\right)=\left(3x+6y\right)⋮5\)

Ta có \(\left(3x+6y\right)-\left(3x-4y\right)=10y⋮5\)

Mà \(\left(3x+6y\right)⋮5\Rightarrow\left(3x-4y\right)⋮5\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2018

Lời giải:

Ta có:

\(3x+5y\vdots 7\)

\(\Leftrightarrow 4(3x+5y)\vdots 7\)

\(\Leftrightarrow 12x+20y\vdots 7\)

\(\Leftrightarrow 7x+5(x+4y)\vdots 7\)

\(\Leftrightarrow 5(x+4y)\vdots 7\)

\(\Leftrightarrow x+4y\vdots 7\) (do \(5\) không chia hết cho $7$ )

Do đó ta có đpcm.

Nhớ rằng dấu "\(\Leftrightarrow \)" tương ứng với phép chứng minh cả hai chiều.

15 tháng 1 2018

Ta có 3x+5y\(⋮\)7

\(\Rightarrow\)4(3x+5y)\(⋮\)7

\(\Rightarrow\)12x+20y\(⋮\)7

\(\Rightarrow\)7x+5(x+4y)\(⋮\)7

\(\Leftrightarrow\)5(x+4y)\(⋮7\)

\(\Leftrightarrow\)x+4y\(⋮\)7

\(\Rightarrow\)dpcm

a: |3x+2y|+|4y-1|<=0

=>3x+2y=0 và 4y-1=0

=>y=1/4 và x=-1/6

b: |x+y-7|+|xy-10|<=0

=>x+y-7=0 và xy-10=0

=>x+y=7 và xy=10

hay \(\left(x,y\right)\in\left\{\left(2;5\right);\left(5;2\right)\right\}\)

c: |x-y-2|+|y+3|=0

=>x-y-2=0 và y+3=0

=>y=-3 và x-y=2

=>y=-3 và x=2+y=2-3=-1

20 tháng 11 2019

ồ bài này khá dễ

Ta có

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)

\(\)\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4\)

\(=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên \(\hept{\begin{cases}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{cases}\Rightarrow x^2+5xy+y^2\in Z}\)

Vậy A là số chính phương

20 tháng 11 2019

\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4.\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4.\)

\(=\left[\left(x^2+5xy+5y^2\right)-y^2\right]\left[\left(x^2+5xy+5y^2\right)+y^2\right]+y^4.\)

\(=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Đến đây ta có điều phải chứng minh rồi :>

17 tháng 1 2019

Mk chỉ làm một ý các câu còn lại bn làm tương tự nha:

a) (x+5).(y-3)=0

Vì x,y thuộc Z nên x+5 thuộc z và y-3 thuộc Z

Vì (x+5).(y-3)=0

=> x+5=0 hoặc y-3=0

(+) x+5=0

x=0-5

x=-5

(+) y-3=0

y=0+3

y=3

Vậy x=-5 và y thuộc Z

hoặc y=3 và x thuộc Z

Nhớ tick cho mk nhé Kim Taehyungie.Dạng này mấy hôm trước mk mới hok nên đúng 100% đấy.Cô mk dạy y hệt như thế này lunhiha

17 tháng 1 2019

Riên cái câu a đấy thì khác vs 3 câu còn lại nhé nên mk sẽ làm giúp cậu 1 câu còn 2 câu cậu tự làm như câu này nhé:

B) (x-7).(2+y)=13

Vì x,y thuộc Z nên x-7 thuộc Z và 2+y thuộc Z

Vì (x-7).(2+y)=13

=> x-7 thuộc Ư(13)

Ta có Ư(13)={1;13;-1;-13) (tại sao lại có -1 và -13 vì x thuộc z nhé)

Do đó: x-7 thuộc{1;13;-1;-13}

Ta có bảng sau:Bn tự kẻ ra và làm nhé.Cứ thay x vào rồi tìm như bình thường nhé

7 tháng 6 2019

\(a,\)\(\left(3x-2\right)\left(2y-3\right)=1\)

\(\Rightarrow\)Trường hợp 1 : 

\(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

\(\Rightarrow\)Trường hợp 2 :

\(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}}\)

Vậy ....

7 tháng 6 2019

#)Giải :

\(b,\left(x+1\right).\left(2y-1\right)=12\)

\(\left(2y-2\right)y-x-13=0\)

\(2\left(x+1\right)=0\)

\(2x=-2\Rightarrow x=-1\)

\(2y-1=0\Rightarrow2y=1\Rightarrow y=\frac{1}{2}\)