K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 1 2018

Lời giải:

Ta có:

\(3x+5y\vdots 7\)

\(\Leftrightarrow 4(3x+5y)\vdots 7\)

\(\Leftrightarrow 12x+20y\vdots 7\)

\(\Leftrightarrow 7x+5(x+4y)\vdots 7\)

\(\Leftrightarrow 5(x+4y)\vdots 7\)

\(\Leftrightarrow x+4y\vdots 7\) (do \(5\) không chia hết cho $7$ )

Do đó ta có đpcm.

Nhớ rằng dấu "\(\Leftrightarrow \)" tương ứng với phép chứng minh cả hai chiều.

15 tháng 1 2018

Ta có 3x+5y\(⋮\)7

\(\Rightarrow\)4(3x+5y)\(⋮\)7

\(\Rightarrow\)12x+20y\(⋮\)7

\(\Rightarrow\)7x+5(x+4y)\(⋮\)7

\(\Leftrightarrow\)5(x+4y)\(⋮7\)

\(\Leftrightarrow\)x+4y\(⋮\)7

\(\Rightarrow\)dpcm

14 tháng 8 2017

cm 10a + b chia hết cho 7

ta có : a+5b chia hết cho 7 => 10(a+5b) chia hết cho 7=> 10a+50b chia hết cho 7)(1)

xét hiệu: 10a+50b-(10a+b)=49b chia hết cho 7   (2)

                 từ (1);(2) =>10a+b chia hết cho 7

cm a+5b chia hết cho 7

ta có 10a+b chia hết cho 7=> 5(10a+b) chia hết cho 7 => 50a+5b chia hết cho 7 (1)

xét hiệu: 50a+5b-(a+5b)=49a chia hết cho 7 (2)

từ (1);(2)=>a+5b chia hết cho 7

nhớ tích đúng cho mình nhé ahihi

28 tháng 11 2017

Ta có

\(a+4b⋮13\)

\(\Rightarrow10a+40b⋮13\)

\(\Rightarrow\left(10a+b\right)+39b⋮13\)

\(\Rightarrow10a+b⋮13\)

Chứng minh chiều ngược lại

Ta có:

\(10a+b⋮13\)

\(\Rightarrow40a+4b⋮13\)

\(\Rightarrow\left(a+4b\right)+39a⋮13\)

\(\Rightarrow a+4b⋮13\)

7 tháng 10 2017

bn thử lấy  vd xem no mk nghĩ chắc điều ngược lại phải công cả số nguyên hoặc số hữu tỉ nữa

kb nha

7 tháng 10 2017

ừm

thanks!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DD
11 tháng 3 2022

1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)

\(\Leftrightarrow\left(x+4y\right)⋮7\)

Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm) 

DD
11 tháng 3 2022

2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(n+1\right)\)

Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)

Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60