Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình sửa lại đề bài của bạn chút : Cần chứng minh \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2\le ab\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)(đpcm)
b) Ta có : \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left(2\sqrt{1+a}\right)^2=\left(1.\sqrt{1+b}+1.\sqrt{1+c}\right)^2\le\left(1^2+1^2\right)\left(1+b+1+c\right)\)
\(\Leftrightarrow4\left(1+a\right)\le2\left(b+c+2\right)\Leftrightarrow4+4a\le2\left(b+c\right)+4\Leftrightarrow b+c\ge2a\)(đpcm)
Ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge a+b+c\)
\(\Leftrightarrow\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge0\)
\(\Leftrightarrow\frac{c^3-a^3}{a^2}+\frac{a^3-b^3}{b^2}+\frac{b^3-c^3}{c^2}\ge0\)
\(\Leftrightarrow\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
Dễ thấy: mẫu dương nên:
\(\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2-a^2b^2c^2\left(a+b+c\right)\ge0\Leftrightarrow\)
\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2+c^5b^2+a^5c^2+b^5a^2-2a^2b^2c^2\left(a+b+c\right)\ge0\)
Chưa nghĩ ra tiếp :v
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\)
\(=\left(\frac{a^3}{b^2}+a\right)+\left(\frac{b^3}{c^2}+b\right)+\left(\frac{c^3}{a^2}+c\right)-a-b-c\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\sqrt{\frac{a^3.a}{b^2}}+2.\sqrt{\frac{b^3.b}{c^2}}+2.\sqrt{\frac{c^3.c}{a^2}}-a-b-c\)\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)
Áp dụng BĐT Cauchy schwarz ta có:
\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)\(\ge2\left[\frac{\left(a+b+c\right)^2}{a+b+c}\right]-a-b-c=2\left(a+b+c\right)-a-b-c=a+b+c\)
( đpcm )
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)