K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

a) Mình sửa lại đề bài của bạn chút : Cần chứng minh \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)

\(\Rightarrow\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2\le ab\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)(đpcm)

b) Ta có : \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)

Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left(2\sqrt{1+a}\right)^2=\left(1.\sqrt{1+b}+1.\sqrt{1+c}\right)^2\le\left(1^2+1^2\right)\left(1+b+1+c\right)\)

\(\Leftrightarrow4\left(1+a\right)\le2\left(b+c+2\right)\Leftrightarrow4+4a\le2\left(b+c\right)+4\Leftrightarrow b+c\ge2a\)(đpcm)

2 tháng 8 2017

b)

Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)

~ ~ ~ ~ ~

\(abc=ab+bc+ca\)

\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:

\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)

\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)

\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)

\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{3}{16}\) (đpcm)

Dấu "=" xảy ra khi a = b = c 

11 tháng 3 2018

Vân dụng bất đẳng thức \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{\left(a+3b\right)+\left(b+2c+a\right)}=\frac{2}{a+2b+c}\)

\(\Rightarrow\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{4}{\left(b+3c\right)+\left(c+2b+a\right)}=\frac{2}{b+2c+a}\)

\(\Rightarrow\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{\left(c+3a\right)+\left(a+2b+c\right)}=\frac{2}{c+2a+b}\)

Cộng tất cả các vế bất đẳng thức trên và rút gọn ta có bất đẳng thức \(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)

Đẳng thức xảy ra khi: \(\hept{\begin{cases}a+3b=b+2c+a\\b+3c=c+2a+b\Leftrightarrow a=b=c\\c+3a=a+2b+c\end{cases}}\)

11 tháng 3 2018

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Áp dụng vào bài toán ta có : 

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{4}{b+3c+2a+b+c}=\frac{4}{2a+2b+4c}=\frac{2}{a+b+2c}\)

\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{c+3a+a+2b+c}=\frac{4}{4a+2b+2c}=\frac{2}{2a+b+c}\)

Cộng vế theo vế của bất đẳng thức ta được 

\(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\ge\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)

=> ĐPCM

2 tháng 1 2018

post ít một thôi

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)