Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2y^2=1\Rightarrow x^2+1=2\left(y^2+1\right)\) (**)
Vì \(2\left(y^2+1\right)⋮2\Rightarrow\left(x^2+1\right)⋮2\Rightarrow x^2lẻ\Rightarrow\)x lẻ
Vậy x có dạng 2k + 1, thay x = 2k + 1 vào (**) ta được:
\(\left(2k+1\right)^2+1=2\left(y^2+1\right)\)
\(\Rightarrow4k^2+4k+2=2\left(y^2+1\right)\)
\(\Rightarrow2k^2+2k+1=y^2+1\)
\(\Rightarrow2\left(k^2+k\right)=y^2\)
\(\Rightarrow y^2⋮2\) vì \(2\left(k^2+k\right)⋮2\)
Mà y nguyên tố nên suy ra y = 2. Khi đó x = 3. (thoả x,y là số nguyên tố).
Vậy (x,y) = (3,2)
Vì VT lẻ mà \(2y^2\)là số chẵn \(\Rightarrow x^2lẻ\)
Cho x = 2k + 1(k thuộc N)
pt trở thành \(\left(2k+1\right)^2-2y^2=1\)
\(\Leftrightarrow4k^2+4k-2y^2=0\)
\(\Leftrightarrow2k^2+2k-y^2=0\)
Cần \(y^2⋮2\Leftrightarrow y^2⋮4\).Vì y là snt nên nó chỉ có thể là 2\(\Rightarrow y=2\)
Mà thay y = 2 vô thì pt ko có nghiệm nguyên với x,y là số nguyên tố.
Vậy pt vô nghiệm hay S={rỗng}
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo