K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Rõ ràng cặp (x;y) =(t;0) với t \(\inℤ\)là một nghiệm của phương trình

Xét trường hợp y\(\ne\)0, khi đó ta viết được phương trình dưới dạng 

\(2y^2+\left(x^2-3x\right)y+\left(3x^2+x\right)=0\)(1)

Xem đây là phương trình bậc hai ẩn y. Biệt thức \(\Delta\)của nó bằng

\(\left(x^2-3x\right)^2-8\left(3x^2+x\right)=\left(x^2-8x\right)\left(x+1\right)^2\)

Đến đây phương trình (1) có nghiệm y nguyên điều kiện cần là \(\Delta\)phải là số thích phương. Từ đây ta có các TH sau
TH1: x=-1 thay vào (1) ta tính được y=-1

TH2: x\(\ne\)-1, x2-8x=a2(a\(\in\)N) Lúc này ta có: (x-4)2-a2=16 hay [|x-4|-a][|x-4|+a]=16

Dễ dàng tìm được x=0 (tương ứng ới y=0, loại), x=8 (tương ứng với y=-10) và x=9 (tương ứng y=-6 hoặc y=-21)

Vậy tập nghiệm phương trình đã cho là: S={(t;0);(8;-10);(9;-6);(-1;-1)} (t\(\in\)Z)

NV
1 tháng 4 2021

Đề bài sai

Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là: 

\(x^2-4x+y-6\sqrt{y}+13=0\)

NV
1 tháng 4 2021

ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

Vậy có duy nhất cặp  số (x;y)=(2;9) thỏa mãn phương trình