Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại các số nguyên x,y thảo mãn \(x^4+y^3+4=0\) \(\left(1\right)\)
Ta có: \(\left(1\right)\) \(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x+2\right)=-y^3\)
Trước tiên ta nhận xét rằng x phải là một số lẻ, bởi ngược lại nếu x là một số chẵn thì \(x^4+4=-y^3\) là lập phương của một số chẵn, nhưng \(x^4+4\) không chia hết cho 8 với mọi số nguyên x ( vô lí ).
Vậy x là một số lẻ, suy ra y cũng là một số lẻ.
Đặt \(d=\left(x^2-2x+2,x^2+2x+2\right)\)
Ta có: \(4x=\left[\left(x^2+2x+2\right)-\left(x^2-2x+2\right)\right]⋮d\)
Mặt khác d là số lẻ ( vì \(-y^3⋮d\) và y là số lẻ ), dẫn đến \(\left(4,d\right)=1\) và do đó \(x⋮d\)
Suy ra \(2⋮d\) nên \(d=1\) ( vì d lẻ )
Tóm lại, hai số nguyên \(x^2-2x+2\) và \(x^2+2x+2\) là hai số nguyên tố cùng nhau, có tích là lập phương của một số nguyên nên mỗi số là lập phương của một số nguyên.
Đặt:
\(x^2-2x+2=a^3,x^2+2x+2=b^3\) với \(a,b\inℤ\)
Suy ra \(\left(x-1\right)^2=\left(a-1\right)\left(a^2+a+1\right)\)
\(\left(x+1\right)^2=b^3-1=\left(b-1\right)\left(b^2+b+1\right)\)
Do đó: \(a-1\ge0,b-1\ge0\)
Gọi \(d_1\) là ước chung lớn nhất của \(a-1\) và \(a^2+a=1\) thì \(3a=\left[\left(a^2+a+1\right)-\left(a-1\right)^2\right]⋮d_1\)
Mà \(\left(a,d_1\right)=1\) ( vì \(d_1\) là ước của \(a-1\) ) nên \(3⋮d_1\) )
Do đó: \(d_1\in\left\{1;3\right\}\)
Tương tự gọi \(d_2\) là ước chung lớn nhất của \(b-1\) và \(b^2+b+1\) thì \(d_2\in\left\{1;3\right\}\)
Chú ý rằng nếu \(d_1=d_2=3\) thì \(\left(x-1\right)^2\) và \(\left(x+1\right)^2\) đều chia hết cho 3
Suy ra \(2=\left(x+1\right)-\left(x-1\right)\) chia hết cho 3 ( vô lí )
Vì vậy trong hai số \(d_1,d_2\) phải có một số bằng 1
+ Nếu \(d_1=1\) thì khi đó \(a-1\) và \(a^2+a+1\) là hai số nguyên tố cùng nhau có tích là một số chính phương nên cả 2 số đó đồng thời là số chính phương.
Đặt \(a^2+a+1=m^2\) thì
\(4m^2=4\left(a^2+a=1\right)=\left(2a+1\right)^2+3\)
Do đó \(\left(2m-2a-1\right)\left(2m+2a+1\right)=3\)
TH1: \(2m-2a-1=1,2m+2a+1=3\) thì \(a=0\) ( vô lí vì phương trình \(x^2-2x+2\) không cs nghiệm nguyên )
TH2: \(2m-2a-1=3,2m+2a+1=1\) thì \(a=-1\) ( vô lí vì phương trình \(x^2-2x+2=-1\) không cs nghiệm nguyên )
+ Nếu \(d_2=1\) làm tương tự ta không tìm đc x,y thỏa mãn.
Vậy không tồn tại các số nguyên x,y thỏa mãn đề bài.