K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2019

\(x^3+1+1\ge3\sqrt[3]{x^3}=3x\); \(y^3+1+1\ge3y\); \(z^3+1+1\ge3z\)

\(\Rightarrow x^3+y^3+z^3+6\ge3\left(x+y+z\right)\ge x+y+z+2.3\sqrt[3]{xyz}=x+y+z+6\)

\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)

Dấu "=" xảy ra khi \(x=y=z=1\)

1 tháng 5 2019

Bạn làm gì vậy? Mình học lớp 8 mà

19 tháng 12 2016

0.4;0.5;0.1

10 tháng 11 2016

tớ làm dc rồi

6 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(x+y+z\ge3\sqrt[3]{xyz}\)hay \(1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\sqrt[3]{xyz}\le\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)

(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))

Lại áp dụng BĐT Cô - si cho 3 số không âm là x + y; y + z; x + z, ta được:

\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Rightarrow2\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)(Vì x + y + z = 1)

\(\Rightarrow27\left(x+y\right)\left(y+z\right)\left(x+z\right)\le8\)(lập phương hai vế)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\le\frac{8}{27}\)

(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))

\(\Rightarrow S\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết