K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

Mình bổ sung thêm điều kiện: a,b,c,d là các số nguyên

P=\(\left[\left(a^2+b^2\right)+\left(c^2+d^2\right)-2\left(ac+bd\right)\right]\left(a^2+b^2\right)-\left(ad-bc\right)^2\)

\(=\left(a^2+b^2\right)^2-2\left(a^2+b^2\right)\left(ac+bd\right)+\left(c^2+d^2\right)\left(a^2+b^2\right)-\left(ad-bc\right)^2\)

biến đổi 2 hạng tử cuối thành: (ac+bd)2, do đó:

\(P=\left[\left(a^2+b^2\right)-\left(ac+bd\right)^2\right]=\left(a^2+b^2-ac-bd\right)^2\)

=> ĐPCM

30 tháng 6 2017

Ta có : (a2 + b2 ) . ( c2 + d2 )

= a2c2 + b2c2 + a2d2 + b2d2 

= (a2c2 + 2abcd + b2d2) + (a2d2 - 2adbc + b2c2)

= (ac + bd)2 + (ad - bc)2 

Vậy (a2 + b2 ) . ( c2 + d2 ) = ( ac + bd )2 + ( ad - bc )(đpcm)

30 tháng 6 2017

Tham khảo nha bạn:

Câu hỏi của Assasin red - Toán lớp 9 - Học toán với OnlineMath

....

avt1256782_60by60.jpg
Giúp tôi giải toán
7 tháng 8 2015

VP=(a^2)(c^2)+2abcd+(b^2)(d^2)+ 
+(a^2)(d^2)-2abcd+(b^2)(c^2)
=a^2(c^2+d^2)+b^2(d^2+c^2)
=(a^2+b^2)(c^2+d^2)=VT

 

 

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)