K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Cách giải bài này :

Vì Q(x) chia hết cho 5 với mọi x nguyên, nên em chọn 1 số giá trị thích hợp của x để đưa đến các pt nhiều ẩn

Ví dụ Q(0) = d chia hết cho 5; Q(1) = a +b +c +d, vì d chia hết cho 5 => a +b +c chia hết cho 5 (1)

Q(-1) = -a +b -c +d, vì d chia hết cho 5 => -a +b -c chia hết cho 5 (2)

Cộng từ vế (1) và (2) đc 2b chia hết cho 5 => b chia hết cho 5 vì (2,5) = 1

Trừ từng vế (1) và (2) ....

Em tính thêm Q(3) nữa là đc

11 tháng 3 2017

787586

3 tháng 7 2018

\(P\left(x\right)=ax^2+bx+c\)

Thấy rằng: \(\hept{\begin{cases}P\left(0\right)=x\\P\left(1\right)=a+b+c\\P\left(-1\right)=a-b+c\end{cases}}\)

Do P(x) nguyên với mọi x nguyên nên P(0) = c là số nguyên.

Mặt khác: \(2\left(a+c\right)=P\left(1\right)+P\left(-1\right)\inℤ\Rightarrow2a\text{ là SN}\) 

P(1) nguyên c nguyên nên a + b nguyên

Ta có: \(P\left(x\right)=2ax^2+2\left(a+b\right)x+2c-2ax\) (1)

Nhận thấy VP(1) là số chẵn với mọi x nguyên và 2a; a + b; c nguyên nên => đpcm

3 tháng 7 2018

bn ơi sao ở trên P(0)=x mà ở dưới lại suy ra đc P(0)=c vậy, c không = x mà

AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Bạn tham khảo lời giải tại đây:

CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24

14 tháng 8 2020

a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3

<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3

<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3

<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3

Đồng nhất hệ số 

=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)

b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c

<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c

<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c 

<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c

Đồng nhất hệ số 

=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)

14 tháng 8 2020

a) Ta có: 

\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)

\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)

b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)

\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)

\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)

15 tháng 5 2018

\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)

Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)

Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)