Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có nhầm đề không? Nếu chỉ có như vậy thì có vô số đa thức P(x) thỏa mãn với P(x) dạng:
\(P\left(x\right)=x^4+\left(a-3\right)x^3+\left(3-3a\right)x^2+\left(3a-1\right)x-a\)
Với a nguyên bất kì
Bạn có thể thay thử vài giá trị của a và lấy P(x) chia \(\left(x-1\right)^3\) sẽ thấy
Vì \(P\left(x\right)⋮7\forall x\) nên ta có :
\(P\left(0\right)=e⋮7\)
\(P\left(1\right)=a+b+c+d+e⋮7\)
\(P\left(-1\right)=a-b+c-d+e⋮7\)
\(\Rightarrow P\left(1\right)+P\left(-1\right)=\left(2a+2c+2e\right)⋮7\Rightarrow\left(a+c\right)⋮7\)
\(P\left(1\right)-P\left(-1\right)=\left(2b+2d\right)⋮7\Rightarrow\left(b+d\right)⋮7\)
\(P\left(2\right)=16a+8b+4c+2d+e=\left(14a+7b\right)+\left(2a+b+4c+2d+e\right)\)
\(\Rightarrow2a+b+4c+2d⋮7\)
\(P\left(-2\right)=16a-8b+4c-2d+e\)
\(\Rightarrow P\left(2\right)+P\left(-2\right)=32a+8c+2e\)
\(\Rightarrow4a+c⋮7\)
Do \(\left(a+c\right)⋮7\Rightarrow3a⋮7\Rightarrow a⋮7\Rightarrow c⋮7\)
\(P\left(2\right)-P\left(-2\right)=16b+4d\)
\(\Rightarrow\left(b+2d\right)⋮7\Rightarrow d⋮7\Rightarrow b⋮7\)
Vậy nên a, b, c, d, e đều chia hết cho 7.
Ta có \(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+d\right)^2\).
Hệ số tự do của \(\left(x^2+cx+d\right)^2\) là \(d^2\).
Vì vậy \(d^2=4\Leftrightarrow d=\pm2\).
Với \(d=2\) ta có:
\(x^4+ax^3+bx^2-8x+4=\left(x^2+cx+2\right)^2\).
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) ta có:
\(\left(x^2+cx+2\right)^2=x^4+c^2x^2+4+2cx^3+4cx+4x^2\)\(=x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\).
So sánh \(x^4+2cx^3+x^2\left(c^2+4\right)+4cx+4\) với \(x^4+ax^3+bx^2-8x+4\) ta được:
\(\hept{\begin{cases}2c=a\\c^2+4=b\\4c=-8\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}c=-2\\a=-4\\b=8\end{cases}}\).
Tương tự cho trường hợp \(d=-2\).
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
Cách giải bài này :
Vì Q(x) chia hết cho 5 với mọi x nguyên, nên em chọn 1 số giá trị thích hợp của x để đưa đến các pt nhiều ẩn
Ví dụ Q(0) = d chia hết cho 5; Q(1) = a +b +c +d, vì d chia hết cho 5 => a +b +c chia hết cho 5 (1)
Q(-1) = -a +b -c +d, vì d chia hết cho 5 => -a +b -c chia hết cho 5 (2)
Cộng từ vế (1) và (2) đc 2b chia hết cho 5 => b chia hết cho 5 vì (2,5) = 1
Trừ từng vế (1) và (2) ....
Em tính thêm Q(3) nữa là đc
787586