K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

Ta có :

5n+2+26.5n+82n+1=5n.25+26.5n+64.8n=5n(25+26)+64.8n=5n.51+64.8n=5n.598.5n+64.5n=5n.59+(64n5n).8chia hết cho 59 (vì 64n5nchia hết cho 645=59với mọi n).
\(\Rightarrow\) ĐPCM
23 tháng 10 2016

Ta có:

\(\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)=\frac{1.2.3...n\left(n+1\right).\left(n+2\right).\left(n+3\right)...\left(2n\right)}{1.2.3...n}\)

\(=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{1.2.3...n}=\frac{1.3.5...\left(2n-1\right).2^n.\left(1.2.3...n\right)}{1.2.3...n}\)

\(=1.3.5...\left(2n-1\right).2^n⋮2^n\left(đpcm\right)\)

Lúc này dễ dàng tìm được thương của phép chia là 1.3.5...(2n - 1)

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

1 tháng 2 2018

a) Gọi a+4b là c, 10a+b là d.Ta có:

a+4b= c

10a+b = d

=> 3a+ 12b =3c

10a + b = d

=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13

Mà:  3c+d chia hết cho 13

        3c chia hết cho 13

=> d chia hết cho 13 hay 10a+ b chia hết cho 13

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5