Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2
=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)
a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3
=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8
vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ
nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8
nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do
ta có:
\(3^{n+3}-2.3^n+2^{n+5}-7.2^n=\left(3^{n+3}-2.3^n\right)+\left(2^{n+5}-7.2^n\right)\)
\(=3^n\left(3^3-2\right)+2^n\left(2^5-7\right)\)
\(=3^n\left(27-2\right)+2^n\left(32-7\right)\)
\(=3^n.25+2^n.25\)
\(=25\left(3^n+2^n\right)⋮25\)
vậy \(3^{n+3}-2.3^n+2^{n+5}-7.2^n⋮25\left(đpcm\right)\)
\(5^5-5^4+5^3=5^3.5^2-5^3.5+5^3=5^3.(5^2-5+1)\)
\(=5^3.21=5^3.3.7 \vdots 7 \Rightarrow 5^5-5^4+5^3\vdots 7\)
Tương tự :
b,\(7^6+7^5-7^4=7^4.(7^2+7-1)=7^4.55=7^4.5.11\vdots11\)
\(\Rightarrow 7^6+7^5-7^4\vdots 11\)
c,\(24^{54}.54^{24}.2^{10}=(2^3.3)^{54}.(2.3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.3^{54}.2^{24}.(3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.(2^3)^8.2^3.(3^2)^{27}.(3^2)^{36}.2^{7}\)
\(=(2^3)^{63}.(3^2)^{63}.2^7=(2^3.3^2)^{63}.2^7=72^{63}.2^7 \vdots 72^{63}\)
d,\(3^{n+3}+3^{n+1}+2^{n+3}.2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+3}.2^{n+2}\)
\(=3^{n+1}.(3^2+1)+2^{2n+5}=10.3^{n+1}+2.2^{2n+4}\)
\(=2.(5.3^{n+1}+2^{2n+4})\)
Lỗi đề rồi!!!!!!!!!! tớ thay số vào không đúng!
đề sai rồi.A=3^(n+3)-2^2.3^n+2^(n+5)-3^2.2^n