K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

\(4^n+15n-1\) chia hết cho 9

Đặt \(A_n=4^n+15n-1\)

với n = 1 ⇒ \(A_1\) = 4 + 15 – 1 = 18 chia hết 9

+ Giả sử đúng với n = k ≥ 1 nghĩa là:

\(A_k\) = ( \(4^k\) + 15k – 1 ) chia hết 9 ( giả thiết quy nạp )

Ta cần chứng minh: \(A_{k+1}\) chia hết 9

Thật vậy, ta có:

\(A^k\) + 1 = \(4^{k+1}\) + 15(k + 1) – 1

            = 4.\(4^k\) + 15k + 15 – 1

            = 4.( \(4^k\) + 15k – 1 ) – 45k+ 4+ 15 – 1

            = 4.( \(4^k\) +15k- 1 ) – 45k + 18

            = 4. \(A_k\) + ( - 45k + 18 ) 

Ta có: \(A_k\) ⋮ 9 và ( - 45k + 18) = 9 (- 5k + 2 ) ⋮ 9

Nên \(A_{k+1}\) ⋮ 9

Vậy \(4^n+15n-1\) chia hết cho 9 ∀ n ∈ N

NV
3 tháng 8 2021

- Với \(n=3k\)

\(4^n+15n-1=4^{3k}+15.3k-1=64^k+45k-1\equiv1+0-1\equiv0\left(mod9\right)\)

- Với \(n=3k+1\)

\(4^{3k+1}+15\left(3k+1\right)-1=4.64^k+45k+14\equiv4+0-14\equiv0\left(mod9\right)\)

- Với \(n=3k+2\)

\(4^{3k+2}+15\left(3k+2\right)-1=16.64^k+45k+29\equiv16+29\equiv0\left(mod9\right)\)

Vậy \(4^n+15n-1⋮9\)

8 tháng 11 2017

Gọi T(n) là mệnh đề cần chứng minh

*Khi n=1, ta có: \(16^1-15.1-1=0\) chia hết cho 225. Vậy T(1) đúng.

* Giả sử T(k) đúng tức là \(16^k-15k-1\) chia hết cho 225

* Chứng minh T(k+1) đúng tức là chứng minh

\(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225

Ta có: \(16^{k+1}-15\left(k+1\right)-1=16^k.16-15k-16\)

Vì: \(16^k-15k-1=n.225\)(vì chia hết cho 225)

\(\Rightarrow16^k=225n+15k+1\)

Do đó: \(16^{k+1}-15\left(k+1\right)-1=16\left(225n+15k+1\right)-15k-16=225\left(16n+k\right)\) là bội số của 225

Hay \(16^{k+1}-15\left(k+1\right)-1\) chia hết cho 225

Vậy T(k+1) đúng

Theo nguyên lí quy nạp, ta kết luận T(n) đúng với mọi n \(\in N\)

8 tháng 11 2017

Đặt Sn = 16n - 15n - 1

* n = 0 => S0 = 160 - 15.0 - 1 = 0 chia hết cho 225

* n = 1 => S1 = 161 - 15.1 - 1 = 0 chia hết cho 225

Giả sử: Sn chia hết cho 225 đúng đến n = k > 1 (Sk = 16k - 15k - 1 chia hết cho 225)

Với n = k+1 => Sk+1 = 16k+1 - 15(k+1) - 1 = 16(16k - 15k - 1) + 225k = 16Sk + 225k

Mà Sk chia hết cho 225 => 16Sk chia hết cho 225; 225k chia hết cho 225

=> Sk+1 chia hết cho 225

Vậy Sn = 16n - 15n - 1 chia hết cho 225

2 tháng 3 2019

\(n^6-n^4-n^2+1\)

\(=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^4-1\right)\left(n^2-1\right)\)

\(=\left(n^2-1\right)^2\left(n^2+1\right)\)

Thay n=2k+1 vào giải :))

27 tháng 10 2017

1/

n=2 ta thấy đúng

GS đúng với n=k tức là (1-x)k+(1+x)k<2k

Ta cm đúng với n=k+1

(1-x)k+1+(1+x)k+1< (1-x)k+(1+x)k+(1-x)(1+x)k+(1-x)k(1+x)= 2\(\left(\left(1-x\right)^k+\left(1+x\right)^k\right)\)\(< 2.2^k=2^{k+1}\)

=> giả sử là đúng

theo nguyên lí quy nạp ta có đpcm

27 tháng 10 2017

câu 2 đi thánh <(") câu 1 t làm ra rồi 

25 tháng 11 2017

=>21 chia hết 49 h minh nhé