Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
\(\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+...+\frac{19}{9^2\cdot10^2}\)\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}=\frac{99}{100}\)<1
Ta có :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=1-\frac{1}{10^2}< 1\)
1) Ta có: \(\frac{-4}{7}-\frac{11}{19}+\frac{13}{19}\cdot\frac{-3}{7}+\frac{2}{19}:\frac{-7}{4}\)
\(=\frac{-4}{7}-\frac{11}{19}-\frac{39}{133}-\frac{8}{133}\)
\(=\frac{-76}{133}-\frac{77}{133}-\frac{39}{133}-\frac{8}{133}\)
\(=\frac{-200}{133}\)
2) Ta có: \(\left(\frac{-4}{9}+\frac{3}{5}\right):\frac{1}{\frac{1}{5}}+\left(\frac{1}{5}-\frac{5}{9}\right):\frac{1}{\frac{1}{5}}\)
\(=\left(\frac{-4}{9}+\frac{3}{5}\right)\cdot\frac{1}{5}+\left(\frac{1}{5}-\frac{5}{9}\right)\cdot\frac{1}{5}\)
\(=\frac{1}{5}\left(\frac{-4}{9}+\frac{3}{5}+\frac{1}{5}-\frac{5}{9}\right)\)
\(=\frac{1}{5}\left(-1+\frac{4}{5}\right)\)
\(=\frac{1}{5}\cdot\frac{-1}{5}=\frac{-1}{25}\)
3) Ta có: \(\frac{4}{5}-\left(-\frac{2}{7}\right)-\frac{7}{10}\)
\(=\frac{4}{5}+\frac{2}{7}-\frac{7}{10}\)
\(=\frac{56}{70}+\frac{20}{70}-\frac{49}{70}\)
\(=\frac{27}{70}\)
4) Ta có: \(\frac{2}{7}-\left(-\frac{13}{15}+\frac{4}{9}\right)-\left(\frac{5}{9}-\frac{2}{15}\right)\)
\(=\frac{2}{7}+\frac{13}{15}-\frac{4}{9}-\frac{5}{9}+\frac{2}{15}\)
\(=\frac{2}{7}+1-1=\frac{2}{7}\)
Ta có :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\)\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=\)\(\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+\frac{4^2}{3^2.4^2}-\frac{3^2}{3^2.4^2}+...+\frac{10^2}{9^2.10^2}-\frac{9^2}{9^2.10^2}\)
\(=\)\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\)\(1-\frac{1}{10^2}\)
\(=\)\(\frac{100-1}{100}\)
\(=\)\(\frac{99}{100}\)
Chúc bạn học tốt ~
Viết đầu bài khó hiểu quá :((
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2+3^2}+...+\dfrac{19}{9^2-10^2}\)
\(=\) \(\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=\) \(1-\dfrac{1}{10^2}< 1\) ( đpcm )