K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

10 tháng 11 2019

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)

\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{2019}{3^{2019}}\)

=>\(3A=1+\frac{2}{3}+...+\frac{2019}{3^{2018}}\)

=>\(2A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)

Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{2018}}\)

=>\(2B=3-\frac{1}{3^{2018}}\)=>\(B=\frac{3-\frac{1}{3^{2018}}}{2}\)

=>\(2A=\frac{3-\frac{1}{3^{2018}}}{2}-\frac{2019}{3^{2019}}=\frac{\frac{3^{2019}-1}{3^{2018}}}{2}-\frac{2019}{3^{2019}}\)

\(=\frac{3^{2019}-1}{3^{2018}.2}-\frac{2019}{3^{2019}}=\frac{3\left(3^{2019}-1\right)-2019.2}{3^{2019}.2}\)

Nhầm tí

dòng thứ 2 từ dưới lên cm bé hơn 0,75 luôn nhá

17 tháng 1 2020

Ta có: \(n^2>n^2-1=n^2-n+n-1=\left(n+1\right)\left(n-1\right)\)

Lúc đó:

\(B=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2019^3}\)

\(< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2018.2019.2020}\)

\(2B< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2018.2019.2020}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}\)

\(=\frac{1}{2}-\frac{1}{2019.2020}< \frac{1}{2}\)

\(2B< \frac{1}{2}\Rightarrow B< \frac{1}{2^2}\)

Vậy \(B=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2019^3}< \frac{1}{2^2}\left(đpcm\right)\)

20 tháng 1 2020

thank you bn nha

25 tháng 9 2020

a/

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(A=2A-A=1-\frac{1}{2^{100}}< 1\)

b/

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)