K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

đặt biểu thức trên là A

A < 1/2+ 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100

A < 1/4 + 1/2 - 1/100 < 3/4

vậy A < 3/4

2 tháng 5 2016

Đặt S=1/22+1/32+1/42+...+1/1002

Vì 1/32=1/3.3<1/2.3

1/42=1/4.4<1/3.4

Suy ra 1/22+1/32+1/42+...+1/1002<1/22+1/2.3+1/3.4+...+1/99.100

S<1/22+1/2-1/3+1/3-1/4+...+1/99-1/100

S<1/4+1/2-1/100

S<3/4-1/100<3/4

Suy ra S<3/4(ĐPCM)

11 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\) ta có : 

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

17 tháng 4 2016

ta có : \(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4};...;\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}<\frac{3}{4}\left(đpcm\right)\)

20 tháng 4 2015

\(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}<\frac{6}{24}=\frac{1}{4}\)=>B<\(\frac{1}{4}\)(1)

\(B=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)=>B>\(\frac{1}{6}\)(2)

Từ (1)(2)=> \(\frac{1}{6} (đpcm)

 

 

 

14 tháng 2 2016

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

..........

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

Vì \(\frac{99}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

9 tháng 5 2016

Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

9 tháng 5 2016

Đặt biểu thức ở vế trái là A ta có

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\)

\(=1-\frac{1}{100}<1\Rightarrow A<1\) (dpcm)