K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\) ta có : 

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

16 tháng 3 2016

Chứng tỏ rằng :

a) 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4+.....+1 phần 49.50 <1

b)1 phần 22 + 1 phần 32 + 1 phần 42+.....+1 phần 20082 + 1 phần 20092 <1

Toán lớp 6

ai tích mình tích lại 

4 tháng 8 2015

A=1-1/2+1/2-1/3+....+1/99-1/100

A=1-1/100

A=99/100<1

B<1/1.2+1/2.3+.....+1/99.100

B<1-1/2+1/2-1/3+.....+1/99-1/100

B<1-1/100

B<99/100<1

28 tháng 4 2015

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

28 tháng 4 2015

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}<\frac{1}{20}.20=1\)

Vậy \(\frac{1}{2}\)< A < 1

3 tháng 2 2016

c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3

=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100

=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101

=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)

d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)

               \(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

                ..........

                \(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

 \(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)

 

3 tháng 2 2016

a,b đề là j bn???????????

20 tháng 3 2016

nhanh giúp mình

28 tháng 9 2016

a/ \(3A=1.2.3+2.3.3+3.4.3+4.5.3+...+29.30.3.\)

\(3A=1.2.3+2.3\left(4-1\right)+3.4.\left(5-2\right)+4.5\left(6-3\right)+...+29.30\left(31-28\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+29.30.31-28.29.30\)

\(3A=29.30.31\Rightarrow A=\frac{29.30.31}{3}=10.29.31=8990\)

c/ \(C=1+2\left(1+1\right)+3\left(2+1\right)+4\left(3+1\right)+...+30\left(29+1\right)\)

\(C=1+2+1.2+2.3+3+3.4+4+...+29.30+30\)

\(C=\left(1+2+3+4+...+30\right)+\left(1.2+2.3+3.4+...+29.30\right)\)

Dấu ngoặc thứ nhất là tính tổng 1 cấp số cộng, dấu ngoặc thứ 2 chính là câu a

b/ Câu b dãy viết ngắn quá chưa tìm ra quy luật

28 tháng 9 2016

a) A = 1.2 + 2.3 + ... + 29.30

=> 3A = 1.2.3 + 2.3.(4-1) + ... + 29.30.(31-28)

          = 1.2.3 + 2.3.4 - 1.2.3 + ... + 29.30.31 - 28.29.30

          = 29.30.31

=> A = \(\frac{29.30.31}{3}=8990\)

 

8 tháng 6 2018

b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1

8 tháng 6 2018

b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

c,Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(.....\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                                             \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                               \(=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)