K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

1/1^2 + 1/2^2 + 1/32 + 1/42 + ... + 1/1002 < 1 + 1/4 + 1/2x3 + 1/3x4 + ..  + 1/99x100  

                                                                   < 1 + 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + .. + 1/99 - 1/100

                                                                   < 1 + 1/4 + 1/2 - 1/100

                                                                   < 7/4 - 1/100 < 7/4 

20 tháng 8 2020

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) 

\(=1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)

\(=\frac{7}{4}-\frac{1}{100}< \frac{7}{4}\)

14 tháng 2 2016

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

..........

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

Vì \(\frac{99}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

9 tháng 5 2016

Tổng quát: \(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

9 tháng 5 2016

Đặt biểu thức ở vế trái là A ta có

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\)

\(=1-\frac{1}{100}<1\Rightarrow A<1\) (dpcm)


 

22 tháng 2 2016

ta có 1/2^2+1/3^2+1/4^2+...+1/100^2<A=1/1*2+1/2*3+1/3*4+...+1/99*100

=> A= (1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/99-1/100)

       =1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

       =1-1/100= 99/100 <1

=> 1/2^2+1/3^2+1/4^2+...+1/100^2<1

22 tháng 2 2016

1/2^2+1/3^2+1/4^2+..+1/100^2

1/2^2<1/1.2=1-1/2

1/3^2<1/2.3=1/2-1/3

1/4^2<1/3.4=1/3-1/4

........

1/100^2<1/99.100=1/99-1/100

1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

1/2^2+1/3^2+1/4^2+...+1/100^2<1-1/100=99/100<1 (đpcm)

17 tháng 4 2016

ta có : \(\frac{1}{2^2}=\frac{1}{4};\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4};...;\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{4}+\frac{1}{2}-\frac{1}{100}<\frac{3}{4}\left(đpcm\right)\)

12 tháng 4 2018

1/2^2+1/3^2+...+1/100^2

=1/2.2+1/3.3+...+1/100.100 < 1/1.2+1/2.3+...+1/99.100=1-1/100<1

Vậy 1/2^2+1/3^2+...+1/100^2<1

12 tháng 4 2018

Ta so sánh:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) và biểu thức  \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4}+...+\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< A\) ( 1 )

Ta lại so sánh giữa biểu thức A và 1

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Mà \(\frac{99}{100}< 1\Leftrightarrow A< 1\)( 2 )

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)