Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
405n + 2405 + m2
Ta có: 405n = (...5) ( một số tận cùng là 5 nâng lên lũy thừa nào cũng tận cùng là 5 )
2405 = (24)101 · 2 = 16101 · 2 = (...6) · 2 = (...2) ( một số tận cùng là 6 nâng lên lũy thừa nào cũng là 6 )
=> 405n + 2405 = (...5) + (...2) = (...7)
mà m2 là số chính phương, m\(\in\)N* nên m2 không có tận cùng là 3 ( vì là số chính phương )
=> 405n + 2405 + m2 không có tận cùng là 0.
Vậy 405n + 2405 + m2 \(⋮̸10\)với m; n \(\in\)N*
giả sữ 10^n chia hết cho45 dư 10 su ra 10^n-10 chia hết cho 45
Vậy 10^n-n cũng sẽ chia hết cho 9 và 5
ta có: 10^n-10=100000000000.....n ( n số 0)-10=999999999999...........(n-1 số 9)0
xét thấy n-1 số 9 chia hết cho 9 và 10 chia hết cho 5 suy ra 10^n-10 chia hết cho 45
nên 10^n chia hết cho 45 dư 10
tick cho mk nnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhaaaaaaaaaaaaaaaa!!!!!!!!!!!!!!!!!!!!!!!1
Gì mà chia hết cho 13 ;
\(3^6+3^3+1=757\) không chia hết cho 13
\(3^{12}+3^6+1\) không chia hết cho 13;
Đề sai oy
\(A_n=n\left(n^2+1\right)\left(n^2+4\right)\)
\(=\left(n^3+n\right)\left(n^2+4\right)\)
\(=n^5+4n+5n^3\)
\(=n^5-n+5n+5n^3\)
Vì \(n^5\) co dạng \(n^{4k+1}\) (k thuộc N) nên \(n^5\) luôn có chữ số tận cùng giống n
\(\Rightarrow n^5-n=\overline{.....0}⋮5\)
Do đó \(n^5-n+5n+5n^3⋮5\) hay \(A_n⋮5\) (đpcm)
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.