Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
a)
\(12^{2000}-2^{1000}\)
\(=\left(12^2\right)^{1000}-2^{1000}\)
Rút gọn cả hai vế này ta được
\(144-2=142\) chia hết cho 10
Ta có:
\(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(\frac{2012}{2013}=1-\frac{1}{2013}\)
\(\frac{2013}{2014}=1-\frac{1}{2014}\)
Do \(\frac{1}{2012}>\frac{1}{2013}>\frac{1}{2014}\)=> \(-\frac{1}{2012}< -\frac{1}{2013}< -\frac{1}{2014}\)
=> \(1-\frac{1}{2012}< 1-\frac{1}{2013}< 1-\frac{1}{2014}\)
=> \(\frac{2011}{2012}< \frac{2012}{2013}< \frac{2013}{2014}\)
\(A=\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{1+\left(\dfrac{1}{2013}+1\right)+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{3}{2011}+1\right)+...+\left(\dfrac{2012}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{\dfrac{2014}{2014}+\dfrac{204}{2013}+\dfrac{2014}{2012}+\dfrac{2014}{2011}+...+\dfrac{2014}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)
\(A=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}=2014\)
mình ko chắc đúng nha !
Số số hạng của tử là :
(2013-1):1+1=2013(số hạng)
\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+.....+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{1}{2013}+1+\dfrac{2}{2012}+1+....+\dfrac{2012}{2}+1+\dfrac{2013}{1}-2012}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{2014}{2013}+\dfrac{2014}{2012}+....+\dfrac{2014}{2}+1}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)
\(=2014\left(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\right)\)
=2014
Mình ghi thêm ở cái dâu bằng thứ 2 cuối cùng trên tử có ghi trừ 2012 là do tử có 2013 hạng tử mà mình chỉ cộng 1 cho 2012 hạng tử nên phải trừ đi 2012
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
pt \(\Leftrightarrow\frac{2-x}{2011}+1=\frac{1-x}{2012}+1-\frac{x}{2013}+1\)
\(\Leftrightarrow\frac{2013-x}{2011}=\frac{2013-x}{2012}+\frac{2013-x}{2013}\)
\(\Leftrightarrow\left(2013-x\right)\left(\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\ne0\)nên \(2013-x=0\Leftrightarrow x=2013\)
Vậy pt có 1 nghiệm là x=2013
~~~~~~~
~~~~~~~~~
~~~~~~~
~~~~~~~~
~~~~~~~