K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

n^3 - 25n + 60

= n^3 - n - 24n + 60

= n.(n^2 - 1) - 24n + 60

= n.(n - 1).(n + 1) - 24n + 60

Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6

Lại có: -24n + 60 chia hết cho 6

Do đó, n^3 - 25n + 60 chia hết cho 6 (đpcm)

10 tháng 12 2016

tại sao fai nói UCLN(2;3)=1 thế

Chứng minh (n^2 + n - 1)^2 - 1 chia hết cho 24 với mọi n,(n^2 + n - 1)^2 - 1,chia hết cho 24,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

đây là cách giải của mk,

NHỚ TK NHA

24 tháng 7 2021

a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100

c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)

vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

Mà(2, 3) = 1 

⇒n(n-1)(n-2) chia hết cho 2.3 = 6

24 tháng 7 2021

phần b mik ko giải đc 

18 tháng 10 2015

n^3 - n 
n(n^2 - 1) 
n(n - 1)(n + 1) 

Vì n, (n - 1), (n + 1) là ba số nguyên liên tiếp, trong đó, có 1 số chia hết cho 2, một số chia hết cho 3 nên tích 3 số chia hết cho 6 

=> n(n - 1)(n + 1) chia hết cho 6 
<=> (n^3 - n) chia hết cho 6

18 tháng 10 2015

Ta có : n3 - n = n . ( n2 - 1 )

                     = n . ( n -1 ) . ( n + 1 )

   Đây là tích 3 số tự nhiên liên tiếp => nó chia hết cho 2 ; 3

Vậy n3 - n chia hết cho 6 

12 tháng 7 2015

Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)

Vì n-1,n và n+1 là 3 số tự nhiên liên tiếp.

=>(n-1).n.(n+1) chia hết cho 3(1)

Lại có: Vì n-1 và n là 2 số tự nhiên liên tiếp.

=>(n-1).n chia hết cho 2.

=>(n-1).n.(n+1) chia hết cho 2(2)

Từ (1) và (2) ta thấy.

(n-1).n.(n+1) chia hết cho 3 và 2.

mà (3,2)=1

=> (n-1).n.(n+1) chia hết cho 6.

Vậy n3-n chia hét cho 6 với mọi số tự nhiên n.

10 tháng 10 2017

x=120, y=90

2 tháng 9 2017

a)Ta có : 

\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)

* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6

\(\Rightarrow\) n\(^3\)-13n chia hết cho 6

b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)

Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)

    (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)

 Mà (3;5;8) =1  (4)

Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)

                                 => A⋮120

c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). 

2 tháng 9 2017

Đề bài c sai r nha bn

10 tháng 7 2016

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích ba số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2,3) = 1 => n3-n chia hết cho 2x3=6 với mọi số nguyên n