K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2021

a.

\(x^4+x^3+1=\left(\dfrac{x^4}{4}+x^3+x^2\right)+\left(\dfrac{3x^4}{4}-x^2+\dfrac{1}{3}\right)+\dfrac{2}{3}\)

\(=\left(\dfrac{x^2}{2}+x\right)^2+\dfrac{3}{4}\left(x-\dfrac{2}{3}\right)^2+\dfrac{2}{3}>0\) ; \(\forall x\)

\(\Rightarrow x^4+x^3+1=0\) vô nghiệm

b.

\(x^4+x+1=\left(x^4-x^2+\dfrac{1}{4}\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}\)

\(=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\)

\(\Rightarrow x^4+x+1=0\) vô nghiệm

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Lời giải:
a. 

$2(x^4+x^3+1)=2x^4+2x^3+2=(x^4+2x^3+x^2)+x^4-x^2+1$

$=(x^2+x)^2+(x^2-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^4+x^3+1>0, \forall x\in\mathbb{R}$

Do đó pt $x^4+x^3+1=0$ vô nghiệm.

b.

$x^4+x+1=(x^4-x^2+\frac{1}{4})+(x^2+x+\frac{1}{4})+\frac{1}{2}$

$=(x^2-\frac{1}{2})^2+(x+\frac{1}{2})^2+\frac{1}{2}\geq \frac{1}{2}>0$ với mọi $x\in\mathbb{R}$

$\Rightarrow x^4+x+1=0$ vô nghiệm (đpcm).

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

d) Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=4m-3\end{matrix}\right.\)

Ta có: \(A=x_1^2+x_2^2+2\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)\)

\(\Rightarrow A=4m^2-8m+6-4m=4m^2-12m+6\)\(=4\left(m^2-3m+\frac{3}{2}\right)=4\left(m^2-2\cdot m\cdot\frac{3}{2}+\frac{9}{4}-\frac{3}{4}\right)=4\left(m-\frac{3}{2}\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)

30 tháng 6 2020

a) Thay m=3 vào pt ta được:

\(x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt khi m = 3

b)

Xét pt: \(x^2+2mx+4m-3=0\)

\(\Delta'=m^2-\left(4m-3\right)=m^2-4m+3=\left(m-3\right).\left(m-1\right)\)

để pt có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow\left(m-3\right).\left(m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy m \(\in\left\{1;3\right\}\) là giá trị cần tìm

28 tháng 5 2018

\(x^2-2\left(m+2\right)x+\left(m+2\right)^2-1=0.\)

\(x^2-2\left(m+2\right)x+\left\{\left(m+2\right)^2-1\right\}=0\)

\(\hept{\begin{cases}a=1\\b=-2\left(m+2\right)\\c=\left\{\left(m+2\right)^2-1\right\}\end{cases}}\)

\(\Delta'=\left(m+2\right)^2-\left\{\left(m+2\right)^2-1\right\}=1\) 

\(\Delta'>0\)

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=-m-2+1=-1.\)

\(x_2=-m-2-1=-3\)

có \(\Delta'=\left(m+2\right)^2-\left(m+2\right)^2+1=1\) để ý phần này

m = bao nhiêu thì denta vẫn =1  

vậy vs mọi giá trị của M thì denta vẫn = 1 , và pt có 2 nghiêm x1,x2

28 tháng 5 2018

bn ơi bạn giải các cc j vây