Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm
Làm câu 2 trước vậy , câu 1 để sau
a, pt có nghiệm \(x=2-\sqrt{3}\)
\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)
\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)
Vì VP là số hữu tỉ
=> VT là số hữu tỉ
Mà \(\sqrt{3}\)là số vô tỉ
=> 4a + b + 15 = 0
=> 7a + 2b + 25 = 0
Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)
Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)
b, Với a = -5 ; b = 5 ta có pt:
\(x^3-5x^2+5x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)
Giả sử x1 = 1 là 1 nghiệm của pt ban đầu
x2 ; x3 là 2 nghiệm của pt (1)
Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)
Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)
\(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)
\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)
\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)
\(\Leftrightarrow x^5_2+x_3^5+4=728\)
\(\Leftrightarrow x_2^5+x_3^5=724\)
Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
\(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)
\(=1+724\)
\(=725\)
Vậy .........
Câu 1 đây , lừa người quá
Giả sử pt có 2 nghiệm x1 ; x2
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)
\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)
Lại có \(x_1+x_2=m^2\inℕ^∗\)
Mà x1 hoặc x2 nguyên
Nên suy ra \(x_1;x_2\inℕ^∗\)
Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)
\(\Leftrightarrow2m+2-m^2+1\ge0\)
\(\Leftrightarrow-1\le m\le3\)
Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)
Thử lại thấy m = 3 thỏa mãn
Vậy m = 3
a, Ta có \(\Delta'=\left(m-1\right)^2-m^2+9\)
\(=m^2-2m+1-m^2+9\)
\(=10-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\Leftrightarrow m=5\)
Với m = 5 thì pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m-1}{1}=\frac{5-1}{1}=4\)
b,Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\le5\)
Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-9\end{cases}}\)
Ta có \(\frac{x_1^2+x_2^2}{2}-x_1-x_2=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)
\(=\frac{\left(x_1+x_2\right)^2}{2}-x_1x_2-\left(x_1+x_2\right)\)
\(=\frac{4\left(m-1\right)^2}{2}-m^2+9-2\left(m-1\right)\)
\(=2\left(m-1\right)^2-m^2+9-2m+2\)
\(=2m^2-4m+2-m^2+9-2m+2\)
\(=m^2-6m+13\)
\(=\left(m-3\right)^2+4\ge4\)
Dấu "=" xảy ra <=> m = 3 (tm)
a) ( a = 1; b = -2(m+3); c = m^2 + 3 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(m+3\right)\right]^2-4.1.\left(m^2+3\right)\)
\(=4\left(m^2+6m+9\right)-4m^2-12\)
\(=4m^2+24m+36-4m^2-12\)
\(=24m-24\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow24m-24>0\Leftrightarrow m>1\)
b)
* Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2\left(m+3\right)\\P=x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
Ta có: \(x_1^2+x_2^2\)
\(=S^2-2P\)
\(=\left[2\left(m+3\right)\right]^2-2.\left(m^2+3\right)\)
\(=4\left(m^2+6m+9\right)-2m^2-6\)
\(=4m^2+24m+36-2m^2-6\)
\(=2m^2+24m+30\)
* \(\frac{1}{x_1}+\frac{1}{x_2}\)
\(=\frac{x_1+x_2}{x_1x_2}\)
\(=\frac{S}{P}\)
\(=\frac{2\left(m+3\right)}{m^2+3}\)
\(=\frac{2m+6}{m^2+3}\)
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
xét pt \(x^2-\left(m-1\right)x-m^2+m-1=0\) \(\left(1\right)\)
từ (1) có \(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m^2+m-1\right)\)
\(\Delta=m^2-2m+1+4m^2-4m+4\)
\(\Delta=5m^2-6m+5\)
\(\Delta=5\left(m^2-\frac{6}{5}m+1\right)\)
\(\Delta=5\left[m^2-2.\frac{3}{5}m+\frac{9}{25}-\frac{9}{25}+1\right]\)
\(\Delta=5\left[\left(m-\frac{3}{5}\right)^2+\frac{16}{25}\right]>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm phân biệt \(\forall m\)
ta có vi - ét \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m^2+m-1\end{cases}}\)
theo bài ra \(\left|x_2\right|-\left|x_1\right|=2\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)=4\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2+m-1\right)+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow m^2-2m+1+2m^2-2m+2+2\left|x_1.x_2\right|=4\)
\(\Leftrightarrow3m^2-4m+3+2\left|x_1.x_2\right|=4\)
cái này đến đây xét ra 2 trường hợp rồi đối chiếu với ĐKXĐ là xong
d) Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1\cdot x_2=4m-3\end{matrix}\right.\)
Ta có: \(A=x_1^2+x_2^2+2\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)\)
\(\Rightarrow A=4m^2-8m+6-4m=4m^2-12m+6\)\(=4\left(m^2-3m+\frac{3}{2}\right)=4\left(m^2-2\cdot m\cdot\frac{3}{2}+\frac{9}{4}-\frac{3}{4}\right)=4\left(m-\frac{3}{2}\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)
a) Thay m=3 vào pt ta được:
\(x^2+6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy x = 3 là nghiệm của pt khi m = 3
b)
Xét pt: \(x^2+2mx+4m-3=0\)
có \(\Delta'=m^2-\left(4m-3\right)=m^2-4m+3=\left(m-3\right).\left(m-1\right)\)
để pt có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow\left(m-3\right).\left(m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy m \(\in\left\{1;3\right\}\) là giá trị cần tìm