K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

toán lớp 1 đây á

12 tháng 5 2016

Định lý cuối của Fermat (hay còn gọi là Định lý lớn Fermat) là một trong những định lý nổi tiếng trong lịch sử toán học. Định lý này phát biểu như sau:

Không tồn tại các nghiệm nguyên khác không x, y, và z thoả mãn xn + yn = zn trong đó n là một số nguyên lớn hơn 2.

Định lý này đã làm hao mòn không biết bao bộ óc vĩ đại của các nhà toán học lừng danh trong gần 4 thế kỉ. Cuối cùng nó được Andrew Wiles chứng minh vào năm 1993 sau gần 8 năm ròng nghiên cứu, phát triển từ chứng minh các giả thiết có liên quan. Tuy nhiên chứng minh này còn thiếu sót và đến năm 1995 Wiles mới hoàn tất, công bố chứng minh trọn vẹn.

nghiệm nguyên dưng  của phương trình là các hoán vị của(1,2,3)

13 tháng 2 2020

0 1 2 3 4 5 6 7 8 9

7 tháng 11 2021

Đây mà lớp 1 á bạn???haha

7 tháng 11 2021

tạo câu hỏi nhầm khối lớp rồi bạn=))

8 tháng 8 2015

vi nguoi do uong li dc tang

8 tháng 8 2015

boi vi mua 1 ly tang 1 ly thi nguoi do co 2 ly,khi nguoi do uong xong 1ly thi se tra tien bang cach khong lay ly nuoc sam ma cua hang tang

dong cho mk nhe

18 tháng 8 2020

Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)

Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)

\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)

Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)

Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)

\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

\(\Rightarrow y\in\left\{-2;0;-10\right\}\)

Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn

Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn

Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn

Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)

20 tháng 8 2020
E7euueueru3
2 tháng 1 2017

Potaycom 

Mình tìm lời lớp 3 đang chịu lớp một sao hỏa chăng

27 tháng 4 2019

KO

ĐĂNG

CÂU

HỎI

LINH

TINH

LÊN

DIỄN

ĐÀN

KO ĐĂNG CÂU HỎI LINH TINH

23 tháng 5 2022

(B) hệ đã cho vô nghiệm vì một phương trình trong hệ đã vô nghiệm

24 tháng 5 2022

b nha

 

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất