Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4-x^3+2x^3-2x^2+x^3-x^2+2x^2-2x+6x^2-6x+12x-12\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+6x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+ 2x^2+x^2+2x+6x+12\right)\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)-24\)
\(=x^4+x^3+2x^3+2x^2+3x^3+3x^2+6x^2+6x+4x^3+4x^2+8x^2+8x+12x^2+12x+24x+24\)
\(=x^4+5x^3+5x^3+5x^2+10x^2+50x\)
\(=x^2\left(x^2+5x\right)+5x\left(x^2+5x\right)+10\left(x^2+5x\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\).
Bài 1:
a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2+2.2\left(x^2+x\right)+4-16\)
=\(\left(x^2+x+2\right)^2-4^2\)
=\(\left(x^2+x-2\right)\left(x^2+x+6\right)\)
b,\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
=\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (1)
Đặt \(x^2+5x+5=a\) thay vào (1) đc:
(1) = \(\left(a-1\right)\left(a+1\right)-24=a^2-25\)
\(=\left(a-5\right)\left(a+5\right)\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
Bài 2:
\(a,n^2+4n+3=n^2+n+3n+3\)
\(=n(n+1)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)Đặt \(n=2k+1\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)=\left(2k+2\right)\left(2k+4\right)\)
Mà tích của 2 số nguyên chẵn liên tiếp thì chia hết chia hết cho 8
\(\Rightarrowđpcm\)
b,\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)\(=\left(n+3\right)\left(n^2-1\right)\)\(=\left(n+3\right)\left(n+1\right)\left(n-1\right)\)
Mà 48 = 24.3
Đặt \(n=2k+1\) thì
(1) = \(\left(2k+4\right)\left(2k+2\right)2k\)
Tích của 3 số nguyên chẵn liên tiếp thì chia hết cho 16 (I)
Tích của số chẵn liên tiếp thì có một số là bội của 3 (II)
(I);(II)\(\Rightarrow\)đpcm
c,512 = 29
\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)\(=(n^4-1)\left(n^8-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n^4+1\right)\)Đặt \(n=2k+1\) thay vào đc:
\(2k\left(2k+2\right)\left(4k^2+4k+2\right)2k\left(2k+2\right)\).
\(\left(4k^2+4k+2\right)\left(16k^4+32k^3+24k^2+8k+2\right)\)Bạn tự chứng minh tiếp nhá!!
C= 5n.52 + 26.5n + 26n. 8
= 5n(25+26) + 26n.8
= 5n.51 + 26n.8
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)
+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3
=> (4n + 3)2 chia 3 dư 1 (1)
+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)2 chia 8 dư 1 (2)
Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1
Mà 25 chia 24 dư 1
=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)
Bài 3:
a) Ta có: \(\left(3n-1\right)^2-4\)
\(=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)\)
\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)
b) Ta có: \(100-\left(7n+3\right)^2\)
\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)
\(=\left(10-7n-3\right)\left(10+7n+3\right)\)
\(=\left(7-7n\right)\left(13+7n\right)\)
\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)
c) Ta có: \(\left(3n+1\right)^2-25\)
\(=\left(3n+1-5\right)\left(3n+1+5\right)\)
\(=\left(3n-4\right)\left(3n+6\right)\)
\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)
d) Ta có: \(\left(4n+1\right)^2-9\)
\(=\left(4n+1-3\right)\left(4n+1+3\right)\)
\(=\left(4n-2\right)\left(4n+4\right)\)
\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)
\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)
chiu rồi
bạn ơi
tk nhé@@@@@@@@@@@@@@@@@
xin đó
( 100-1)(100+1)= 100^2-1 < 100^2
k mk mk klại