Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (4n - 2)(4n + 8) = 2(2n - 1)4(n + 2)= 8(2n - 1)(n+2) cái này chia hết cho 8
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
\(2.\) Tính chất: Trong \(n\) số nguyên liên tiếp có một và chỉ một số chia hết cho \(n\)
Giả sử \(n,\) \(n+1,...,\) \(n+1899\) là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)
Xét \(1000\) số tự nhiên liên tiếp từ \(n,\) \(n+1,...,\) \(n+999\) \(\left(2\right)\) thuộc dãy số \(\left(1\right)\)
Theo tính chất trên, sẽ có một số chia hết cho \(1000\)
Giả sử số đó là \(n_0\), khi đó \(n_0\) có tận cùng là \(3\) chữ số \(0\) và \(m\) là tổng các chữ số của \(n_0\)
Khi đó, ta xét \(27\) số tự nhiên gồm:
\(n_0,\) \(n_0+9,\) \(n_0+19,\) \(n_0+29,\) \(n_0+39,...,\) \(n_0+99,\) \(n_0+199,...,\) \(n_0+899\) \(\left(3\right)\)
Sẽ có tổng các chữ số gồm \(27\) số tự nhiên liên tiếp là \(m,\) \(m+1,\) \(m+2,...,\) \(m+26\)
Do đó, có \(1\) số chia hết cho \(27\)
Vậy, trong \(1900\) số tự nhiên liên tiếp có \(1\) số có tổng các chữ số chia hết cho \(27\)
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Lời giải:
1)
Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)
\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)
\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)
Do đó \(A\vdots 405\) (đpcm)
2)
Ta thấy : \(12^{2}\equiv 11\pmod {133}\)
\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)
\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)
\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)
Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)
3)
Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)
Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)
Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)
Do đó ta có đpcm.
Câu 1:
(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm)
Câu 2: Gọi biểu thức trên là a ta có:
A=mn(m²-n²)
= mn(m² - 1 - n² + 1)
= mn [(m-1)(m+1) - (n-1)(n+1)]
= n(m-1)m(m+1) - m(n-1)n(n+1)
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
{m(n-1)n(n+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3
=> A chia hết cho 3
Câu 3:
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Câu 4: Gọi biểu thức trên là B ta có:
* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1)
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5 và n^2(n^2 - 1).5 cũng chia hết cho 5
=> B chia hết cho 5
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3
=> B chia hết cho 3
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1)
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4
=> B chia hết cho 4
Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60
Câu 5: Gọi biểu thức trên là C ta có:
Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2)
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2.
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2.
Vậy C chia hết cho 2
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3.
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3.
Vậy C chia hết cho 3.
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5
Nếu k0 +)m,n đồng dư mod 5 =>m-n chia hết cho 5
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4)
Các trường hợp (1,4),(2,3) =>m+n chia hết cho5
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại)
Vậy C chia hết cho 5.
Từ kết quả trên => C chia hết cho 30( đpcm).
\(2b.\)
Với mọi \(m;n\in Z\), ta có:
\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)
\(\text{*)}\) Xét \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)
\(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)
\(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)
\(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)
Vì \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) là tích của \(5\) số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2;3\) và \(5\)
Mà \(\left(2;3;5\right)=1\)
Do đó, \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\) chia hết cho \(2.3.5=30\) \(\left(1\right)\)
Mặt khác, \(m\left(m-1\right)\left(m+1\right)\) chia hết cho \(6\) (tích của \(3\) số nguyên liên tiếp)
nên \(5mn\left(m-1\right)\left(m+1\right)\) chia hết cho \(30\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) , suy ra \(mn\left(m^4-1\right)\) chia hết cho \(30\) \(\left(\text{*}\right)\)
Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\) chia hết cho cho \(30\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra \(mn\left(m^4-n^4\right)\) chia hết cho \(30\) với mọi \(m;n\in Z\)
Đề câu \(a.\) sai rồi nha bạn!
Ví dụ, với \(n=2\) thì \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\) không chia hết cho \(7\) (vô lí)
Hiển nhiên, với công thức tổng quát \(3^{2n+1}+2^{2n+2}\) sẽ không chia hết cho \(7\) với \(n=2\)
\(-------------\)
\(a.\) \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)
\(=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.3+2^n.4\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)
\(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)
\(3^{2n+1}+2^{n+2}=3.7M+7.2^n\)
Vì \(3.7M\) chia hết cho \(7\) và \(7.2^n\) chia hết cho \(7\) nên \(3.7M+7.2^n\) chia hết cho \(7\)
Vậy, \(3^{2n+1}+2^{n+2}\) chia hết cho \(7\)