Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)
Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)
Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3
Thật vậy
Ta có TH1: n = 3k + 1 (k thuộc Z)
=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3
TH2: n = 3k + 2 (k thuộc Z)
=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3
=> n(n + 1)(2n + 1) chia hết cho 3 (2)
Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n
bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)
\(=n\left(2n^2+2n+n+1\right)\)
\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n-2+3\right)\)
\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)
Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)
Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)
Do đó: \(3n\left(n+1\right)⋮3\)
\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)
\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)
\(=n\left(2n^2-3n+1\right)\)
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)
\(=n\left(n-1\right)\left(2n-1\right)\)
\(=n\left(n-1\right)\left(2n+2-3\right)\)
\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)
\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\)
Ta có :
\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)
\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)
Ta lại có :
\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)
\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)
\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)
2n3 + 3n2 + n = 2n3 + 2n2 + n2 + n
= 2n ( n+1 ) + n ( n+1) = 3n ( n+1)
Vì n là số nguyên nên n và n+1 là 2 số nguyên liên tiếp
=> 1 trong 2 số n và n+1 có 1 số chẵn
=> n(n+1) chia hết cho 2. Mà 2 và 3 là 2 số nguyên tố cùng nhau
=> 3.n(n+1) chia hết cho 2.3=6 hay 2n3 + 3n2 +n chia hết cho 6 với mọi số nguyên n
Ta có: n3+3n2+2n
= n(n2+3n+2)
= n(n+1)(n+2)
Ta có n(n+1)(n+2) là tích 3 số nguyên liên tiếp => n(n+1)(n+2) chia hết cho 2,3 => chia hết cho 6
Bước đến nhà em bóng xế tà
Đứng chờ năm phút bố em ra
Lơ thơ phía trước vài con chó
Lác đác đằng sau chiếc chổi chà
Sợ quá anh chuồn quên đôi dép
Bố nàng ngoác mỏ đứng chửi cha
Phen này nhất quyết thuê cây kiếm
Trở về chém ổng đứt làm ba
\(2n^3+3n^2+n\)
\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)
\(=2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
n chia 3 có thể dư 1 ; 2 hoặc không dư.
Nếu không dư, tích chắc chắn chia hết cho 3
Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3
Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3
Do đó tích trên luôn chia hết cho 2 và 3
Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6
Vậy ...
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta thấy:
\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Và \(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)
Ta có : n3+3n2+2n=n(n2+3n+2)=n(n2+n+2n+2)=n(n+1)(n+2)
Nhận thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp => n(n+1)(n+2) chia hết cho cả 2 và 3 , mà (2,3)=1
=> n(n+1)(n+2) chia hết cho 6 hay n3+3n2+2n chia hết cho 6
Ta có : n3+3n2+2n=n(n2+3n+2)=n(n2+n+2n+2)=n(n+1)(n+2)
Nhận thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp => n(n+1)(n+2) chia hết cho cả 2 và 3 , mà (2,3)=1
=> n(n+1)(n+2) chia hết cho 6 hay n3+3n2+2n chia hết cho 6