K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

fix: \(l=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(49l=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(49l+l=\left(1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)\(50l=1-\frac{1}{7^{100}}\Leftrightarrow l=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(đpcm\right)\)

21 tháng 1 2017

2/ Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(\Rightarrow\frac{A}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)

\(\Rightarrow A+\frac{A}{7^2}=\left(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)+\left(\frac{1}{7^4}-\frac{1}{7^6}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\right)\)

\(\Leftrightarrow\frac{50A}{49}=\frac{1}{7^2}-\frac{1}{7^{102}}< \frac{1}{7^2}=\frac{1}{49}\)

\(\Leftrightarrow A< \frac{1}{50}\)

21 tháng 1 2017

1/ Với x là số lẻ thì: x = 2k + 1

\(\Rightarrow M\left(x\right)=x^2-x-2=\left(2k+1\right)^2-\left(2k+1\right)-2=4k^2+2k-2\)

Là 1 số chẵn khác 2 nên M(x) không phải là số nguyên tố

Với x là số chẵn thì: x = 2k

\(\Rightarrow M\left(x\right)=x^2-x-2=4k^2-2k-2\) là số chẵn khác 2 nên M(x) không phải là số nguyên tố.

Vậy không tồn tại x nguyên để M(x) là số nguyên tố

15 tháng 4 2015

GIUP MINH LAM BAI NAY VOI

15 tháng 4 2015

Gọi A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Nhân \(\frac{1}{7^2}\)vào A ta được

\(\frac{1}{7^2}\).A=   \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)

     A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+....+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Cộng \(\frac{1}{7^2}A\)+\(A\)=\(\frac{1}{49}-\frac{1}{7^{102}}\)\(\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}\)

\(A=\frac{1}{50}-\frac{1}{7^{102}}.\frac{49}{50}<\frac{1}{50}\left(đpcm\right)\)

 

22 tháng 2 2020

\(\frac{1}{7^2}A=\frac{1}{7^2}\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)

\(\Leftrightarrow\frac{1}{7^2}A=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-\frac{1}{7^{10}}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)

\(\Leftrightarrow A+\frac{1}{7^2}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\)

\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\cdot\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)

21 tháng 4 2020

thám tử lưng danh conan à   

Giải:

a,1

b,1

c,1

30 tháng 7 2016

a)Gọi UCLN(4n+5 và 2n +3) là d

Ta có:

[4n+5]-[2(2n+3)] chia hết d

=>[4n+5]-[4n+6] chia hết d

=>-1 chia hết d

=>d={1;-1}.Vậy UCLN của....

b)Gọi UCLN(3n+7;2n+7) là d

[2(3n+7)]-[3(2n+7)] chia hết d

=>[6n+14]-[6n+21] chia hết d

=>-7 chia hết d

=>d={1;-1;7;-7}.Vậy...

c) tương tự