K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

TL:

Ta có:

\(x^2-3x+3=x^2-3x+2,25+0,75\) 

=\(\left(x-1,5\right)^2+0,75\) 

mà:\(\left(x-1,5\right)^2\ge0\forall x\in R\) ;0,75>0

\(\Rightarrow\left(x-1,5\right)^2+0,75\ge0,75>0\) 

=>đpcm

hc tốt

5 tháng 7 2019

bạn làm cụ thể hơn đi

9 tháng 9 2018

sorry bn nhé! mik mới hok lớp 6 à

9 tháng 9 2018

\(3x^2-\frac{9}{3}x+3=3\left(x^2-x+\frac{1}{4}\right)+\frac{9}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

16 tháng 6 2018

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

16 tháng 6 2018

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

9 tháng 6 2015

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

23 tháng 7 2019

a,2x2+8x+20=2(x2+4x)+20

=2(x2+4x+4)+20-4.2

=2(x+2)2+12

Ta có : 2(x+2)2 \(\ge0với\forall x\)

12 > 0

\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)

\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x

b,x4-3x2+5

=(x4-3x2)+5

=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)

=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)

Có : (x2-3/2)2\(\ge0với\forall x\)

\(\frac{11}{4}\)>0

\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)

26 tháng 8 2020

Bài làm:

a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> đpcm

26 tháng 8 2020

a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1

                       = -( x2 - 4x + 4 ) - 1

                       = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

b) x4 + 3x2 + 3 ( * )

Đặt t = x2 

(*) <=> t2 + 3t + 3

     <=> ( t2 + 3t + 9/4 ) + 3/4

     <=> ( t + 3/2 )2 + 3/4

     <=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

12 tháng 8 2017

a, x^2 + xy + y^2 + 1 

= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0

28 tháng 6 2019

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

28 tháng 6 2019

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt