Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> đpcm
a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1
= -( x2 - 4x + 4 ) - 1
= -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
b) x4 + 3x2 + 3 ( * )
Đặt t = x2
(*) <=> t2 + 3t + 3
<=> ( t2 + 3t + 9/4 ) + 3/4
<=> ( t + 3/2 )2 + 3/4
<=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
Ta có : \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3\)
\(=\left(x^2+2x+\dfrac{7}{2}-\dfrac{1}{2}\right)\left(x^2+2x+\dfrac{7}{2}+\dfrac{1}{2}\right)+3\)
\(=\left(x^2+2x+\dfrac{7}{2}\right)^2-\dfrac{1}{4}+3\)
\(=\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\)
Do \(\left(x^2+2x+\dfrac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2+2x+\dfrac{7}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\)
\(\Rightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
\(\left(đpcm\right)\)
:D
a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)
b , Ta có : \(4x^2-2x+3\)= \(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)
c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)
= \(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)
Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
A = x2 - x + 1
A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)
A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
B = (x - 2)(x - 4) + 3
B = x2 - 4x - 2x + 8 + 3
B = x2 - 6x + 11
B = x2 - 2.3.x + 9 + 3
B = \(\left(x-3\right)^2+3>0\)
C = 2x2 - 4xy + 4y2 + 2x + 5
C = (x2 - 4xy + 4y2) + x2 + 2x + 5
C = (x - 2y)2 + (x2 + 2x + 1) + 4
C = (x - 2y)2 + (x + 1)2 + 4
Xét biểu thức C thấy :
Có 2 hạng tử không âm (vì là bình phương)
Vậy C > 0