Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\sqrt{5}\) không phải số vô tỉ
Đặt: \(\sqrt{5}=\frac{m}{n}\) (m,n \(\in\) Z m;n khác 0 và ƯCLN(m;n)=1)
=> \(\left(\sqrt{5}\right)^2=\left(\frac{m}{n}\right)^2\)
=> \(\frac{m^2}{n^2}=5\)
=> m2 = 5n2
=> m2 \(⋮\) 5
=> m \(⋮\) 5
Đặt m = 5k
=> (5k)2 = 5n2
=> 5n2 = 25k2
=> n2 = 5k2
=> n2 \(⋮\) 5
=> n \(⋮\) 5
Mà m \(⋮\) 5 => ƯCLN(m;n) \(\ne\) 1 (trái với gt)
Vậy \(\sqrt{5}\) là số vô tỉ.
Giả sử \(\sqrt{5}\) là số hữu tỉ => \(\sqrt{5}=\frac{m}{n}\left(m;n\in Z;n\ne0\right)\); (|m|; |n|)=1
\(\Rightarrow5=\frac{m^2}{n^2}\)
=> 5.n2 = m2
Giả sử p là ước nguyên tố của n \(\Rightarrow m^2⋮p\)
Mà p nguyên tố nên \(m⋮p\)
Lúc này; (|m|; |n|) = p (khác 1), trái với giả sử
=> \(\sqrt{5}\) là số vô tỉ (điều phải chứng tỏ)
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
Giả sử V38 thuộc Q
V38=a/b (ps tối giản)
38 =a2/b2
a2=38 b2
=> a2 chia hết cho 38 => a chia hết cho 38 => a2 chia hết cho 382 mà a/b tối giản nên b không chia hết cho 38 (1)
Từ a2 chia hết cho 382 => 38b2 chia hết cho 382 => b2 chia hết cho 38 => b chia hết cho 38 (2)
Do (1) và (2) mâu thuẫn nên V38 không thuộc Q => V38 thuộc I
=> 3.V38 thuộc I => V342 thuộc I là V342 là số vô tỉ
What the hell ? ению тела это девочка. Да и лицо видно, хоть и на половину.
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
Bài giải
a, Ta có :
\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ
b, Ta có :
\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ
Giả sử \(\sqrt{3}\)là một số hữu tỉ
\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)
\(\Rightarrow3=\frac{a^2}{b^2}\)
Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố
=> \(a^2⋮3\Leftrightarrow a⋮3\)
Vì \(a⋮3\).=> Đặt a= 3k
=>a2 = 9k2
Thay vào ta có :
\(3=\frac{a^2}{b^2}\)
\(\Rightarrow b^2=9k^2:3\)
\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố
\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)
Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1
=> \(\sqrt{3}\)là một số vô tỉ
Giả sử căn 3 không phải số vô tỉ suy ra:
tồn tại số m và n sao cho căn 3 = m/n (m,n là nguyên tố cùng nhau)
khi đó 3n^2=m^2
=> m chia hết 3, đặt m=3p ( p là số nguyên)
thay m=3p ta có
3n^2=9p^2
n^2=3p^2
=> n chia hết cho 3
=> m và n cùng chia hết cho 3
mâu thuẫn với giả thiết ban đầu , m/n tối giản , m,n là nguyên tố cùng nhau
=> căn 3 là số vô tỉ
ko biết đúng ko