Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) sai đề phải không là (8^8+2^20) chứ?
a) 8^8+2^20=(2^3)^8+2^20=2^24+2^20=2^20*(2^4+1)=2^20*17 chia hết cho 17(đpcm)
b) A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=2(1+2)+2^3(1+2)+...+2^59(1+2)
A=2*3+2^3*3+...+2^59*3
A=3(2+2^3+...+2^59) chia hết cho 3
Vì 3 chia hết cho 3 => 3(2+2^3+...+2^59)
Vậy A chia hết cho 3 (đpcm)
Các câu khác làm tương tự
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
Bài 1:
Ta có: a chia 36 dư 12
⇔a=36k+12
=4(9k+3)⋮4
Ta có: a=36k+12
=36k+9+3
Ta có: 36k+9=9(k+4)⋮9
3\(⋮̸\)9
Do đó: 36k+9+3\(⋮̸\)9(dấu hiệu chia hết của một tổng)
Bài 2:
a) Gọi ba số tự nhiên liên tiếp là a; a+1; a+2
Tổng của ba số tự nhiên liên tiếp là:
a+(a+1)+(a+2)
=a+a+1+a+2
=3a+3
=3(a+1)⋮3(đpcm)
b) Gọi bốn số tự nhiên liên tiếp là a; a+1; a+2; a+3
Tổng của bốn số tự nhiên liên tiếp là:
a+(a+1)+(a+2)+(a+3)
=a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2
Ta có: 4(a+1)⋮4
2\(⋮̸\)4
Do đó: 4(a+1)+2\(⋮̸\)4(dấu hiệu chia hết của một tổng)
hay Tổng của bốn số tự nhiên liên tiếp không chia hết cho 4(đpcm)
Bài 3:
Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow2\cdot A=8+2^3+2^4+2^5+...+2^{21}\)
Do đó: \(2A-A=\left(8+2^3+2^4+2^5+...+2^{21}\right)-\left(4+2^2+2^3+2^4+...+2^{20}\right)\)
\(=8+2^3+2^4+2^5+...+2^{21}-4-2^2-2^3-2^4-...-2^{20}\)
\(\Rightarrow A=8+2^{21}-\left(4+2^2\right)\)
\(=8+2^{21}-4-2^2\)
\(=2^{21}+8-4-4=2^{21}\)
Vậy: A là một lũy thừa của 2(đpcm)
Bài 1:
Khi a : 36 dư 12 => a = 36k +12
=> a = 4(9k + 3) chia hết cho 4
Ta thấy 4 không chia hết cho 9
9k chia hết 9 =>(9k + 3) không chia hết cho 9 => a không chia hết cho 9
Bài 2:
a) Gọi 3 số tự nhiên liên tiếp là a;a+1;+2
ta có:a+(a+1)+(a+2)=3a+3=3.(a+1) chia hết cho 3
b) Làm tương tự như câu a
Bài 3:
A = 4 + 22 + 23 + 24 + ..... + 220
2A = 8 + 23 + 24 + .... + 220 + 221
Suy ra : 2A - A = 221 + 8 - ( 4 + 22 )
Vậy A = 221
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
gọi 22 + 23 + 24 + ....+ 220 là B
=> A=4+B
2B=23+24+25+...+221
2B-B=(23+24+25+...+221)-(22 + 23 + 24 + ....+ 220)
B=221-22
A=4+B
=>A=4+221-22
=>A=22+221-22
=>A=221
Bài 1 : Chứng minh rằng A là một lũy thừa của 2 , với
A = 4 + 22 + 23 + 24 + ....+ 220
A = 4 + (22 + 23 + 24 + ....+ 220 )
A - 4 = 22 + 23 + 24 + ....+ 220
2(A -4) = 23 + 24 + ....+ 221
A - 4 = 2.(A-4) - (A - 4) = ( 23 + 24 + ....+ 221 ) + (22 + 23 + 24 + ....+ 220 )
A - 4 = (23 - 23) + (24 - 24)+ ....+ ( 220 - 220)+(221- 22 )
A - 4 = 221 - 4
A =221 - 4 + 4
A = 221
Vậy A là 1 lũy thừa của 2
Bài 2 : Chứng tỏ rằng
a) 1028 + 8 chia hết cho 72
Ta có:
1000 chia hết cho 8 = 103 chia hết cho 8
=;1025.103 chia hết cho 8
và 8 chia hết cho 8
=1028+8 chia hết cho 8 (1)
Lại có 1028+8= 1000....08(27 CS 0)
=1028+8 chia hết cho 9 (2)
Lại vì ƯCLN (8;9)=1 (3)
Từ (1);(2);(3)=1028+8 chia hết cho 72 => đpcm
b) 88 + 220 chia hết cho 17
Ta có : 88= (82)4= ...64
220= (22)10= ...4
Vậy ...64 + ...4 = ...68
Vì ...68 : 17 = 4 =>( đpcm)
Chúc bạn học tốt !
b, B= 2 +22 + 23 + 24 + .... + 260
=> B= 2 . 1 + 2 . 2 + 22 . 2 + 23 . 2 + ..... + 259. 2
=> B= 2. ( 1 + 2 + 22 + 23 + ... + 259)
\(\Rightarrow B⋮2\)
B= 2 +22 + 23 + 24 + .... + 260
=> B = ( 2 +22 ) + ( 23 + 24) + .... + ( 259 + 260)
=> B = 2. ( 1 + 2 ) + 23..( 1 + 2 ) + .... + 259. ( 1 + 2 )
=> B = 3 . ( 2 + 23 + ... + 259)
\(\Rightarrow B⋮3\)
B= 2 +22 + 23 + 24 + .... + 260
=> B = ( 2 +22 + 23 ) + ( 24 + 25 + 26 ) + .... ( 258+ 259+ 260)
=> B= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258. ( 1 + 2 + 22)
B = 7 . ( 2 + 24 + ... + 258)
\(\Rightarrow B⋮7\)
tương tự chia hết cho 15
ghép 4 số và chung là : 1 + 2 + 22 + 23