\(\in\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Nhầm đề, 2n+7 chứ k pải nà 2n+3 nhe!!!

17 tháng 2 2019

Gọi: d=(n+3,2n+7)

Ta có:

n+3 chia hết cho d và 2n+7 chia hết cho d

=> 2n+7-2(n+3) chia hết cho d=>1 chia hết cho d=>d=1

=> 2n+7 và n+3 nguyên tố cùng nhau

=> n+3/2n+3 tối giản. Vậy phân số (n+3)/(2n+7) tối giản với n là số tự nhiên

8 tháng 7 2018

Nếu n là một số chẵn thì => n+3 là một số lẻ

Mà chẵn x lẻ = chẵn => đpcm

Nếu n là số lẻ thì => n+3 là một số chẵn

Mà lẻ x chẵn = chẵn => đpcm

Vậy tích n.(n+3) luôn là số chẵn với mọi số tự nhiên với n

8 tháng 7 2018

giả sử n lẻ=> n+3 lẻ=> n(n+3) chẵn, Vn thuộc N

giả sử n chẵn=> n(n+3) chẵn(bởi vì chẵn nhân vs số nào cx chẵn

vậy...

Ta có: \(A=1+3+5+7+...+\left(2n-1\right)\)

\(A=\left(\frac{\left(2n-1\right)-1}{2}+1\right)\left(2n-1+1\right):2\)

\(A=\left(\frac{2n-2}{2}+1\right).\frac{2n}{2}\)

\(A=\left(\frac{2\left(n-1\right)}{2}+1\right).n\)

\(A=\left(n-1+1\right).n\)

\(A=n.n\)

\(A=n^2\left(đpcm\right)\)

hok tốt!!

23 tháng 5 2017

Ta có:

1/2^2+1/3^2+.....+1/20^2>1/2.2+1/3.4+1/4.5+.....+1/20.21

                                     =1/4+1/3-1/21

                                      =1/4+6/21

                                      =45/84>1/2

Ta có:

1/2^2+1/3^2+..........+1/20^2<1/1.2+1/2.3+.....+1/19.20

                                           =1-1/20

                                           =19/20<1

23 tháng 5 2017

A = 1 - 1/20

= 19/20

Thử: 1/2 < 19/20 < 1

Đs: 19/20

Bài 1 : thực hiện phép tínhx.\(\frac{1}{3}\)+ 2.x.\(\frac{3}{6}\)- 3.x.\(\frac{4}{9}\)với x = \(\frac{2011}{2012}\)Bài 2 :tìm x biết:a).x.\(\frac{1}{3}\)+\(\frac{x-2}{3}\)=1b) (x-1).(x+2)\(\le\)0Bài 3 : a) tìm các số có 3 chữ số chia hết cho 7 và tổng các chữ số của nó đều chia hết cho 7b)chứng tỏ rằng nếu a; a+k;a+2k là các số nguyên tố lớn hơn 3 thì k chia hết cho 6bài 4:1) cho 5 đường thẳng phân biệt cắt nhau tại...
Đọc tiếp

Bài 1 : thực hiện phép tính

x.\(\frac{1}{3}\)+ 2.x.\(\frac{3}{6}\)- 3.x.\(\frac{4}{9}\)với x = \(\frac{2011}{2012}\)

Bài 2 :tìm x biết:

a).x.\(\frac{1}{3}\)+\(\frac{x-2}{3}\)=1

b) (x-1).(x+2)\(\le\)0

Bài 3 : 

a) tìm các số có 3 chữ số chia hết cho 7 và tổng các chữ số của nó đều chia hết cho 7

b)chứng tỏ rằng nếu a; a+k;a+2k là các số nguyên tố lớn hơn 3 thì k chia hết cho 6

bài 4:

1) cho 5 đường thẳng phân biệt cắt nhau tại O.Hỏi có tất cả bao nhiêu góc đỉnh O tạo thanhtuwf 5 đường thẳng đó không kể góc bẹt

2) cho góc xOy và tia Oz nằm giữa 2 tai Ox và Oy. gọi Ot và Ot' là hai tia phân giác của góc xOz và zOy. chứng tỏ rằng : tot' = \(\frac{1}{2}\)xOy.

Bài 5 : chứng tỏ rằng với mọi số tự nhiên n thì A= \(^{16^n}\)- 15n - 1 chia hết cho 15.

GIÚP MÌNH VỚI NHÉ. NẾU BIẾT THÌ TRÌNH BÀY CÁCH LÀM NHÉ!

CẢM ƠN CÁC BẠN NHIỀU!

0
28 tháng 3 2019

4) Em tham khảo câu 4 tại link này nhé!

Câu hỏi của Handmade And Diy - Toán lớp 6 - Học toán với OnlineMath

28 tháng 3 2019

3.Câu hỏi của 0o0kienlun0o0 - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )