K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Ta có:

\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)

\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)

\(\Rightarrow A=3-\frac{1}{87}\)

\(3-\frac{1}{87}< 3.\)

\(\Rightarrow A< 3\left(đpcm\right).\)

Chúc bạn học tốt!

27 tháng 8 2019

\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+\frac{20}{5.7.9}+...+\frac{20}{25.27.29}\)

\(=5.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(=5.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(=5.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(=5.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(=5.\frac{260}{783}\)

\(=\frac{1300}{783}\)

Ta có:\(\frac{1}{\left(n-2\right)n}-\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)-\left(n-2\right)n}{\left(n-2\right)n\cdot n\left(n+2\right)}\)

                         \(=\frac{n\left(n+2-n+2\right)}{n\cdot\left(n-2\right)n\left(n+2\right)}=\frac{4}{\left(n-2\right)n\left(n+2\right)}\)

Áp dụng\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+...+\frac{20}{25.27.29}\)

     \(=5\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(=5\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(=5\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(=5\cdot\frac{261-1}{783}=5\cdot\frac{260}{783}=\frac{1300}{783}\)

5 tháng 7 2017

\(=\frac{1}{4}.\left(\frac{17.4}{1.3.5}+\frac{17.4}{3.5.7}+\frac{17.4}{5.7.9}+...+\frac{17.4}{47.49.51}\right)\)

\(=\frac{17}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)

\(=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}.\frac{832}{2499}=\frac{208}{147}\)

26 tháng 9 2017

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)

Cái B TT nhé

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)

D TT

E mk thấy nó ss ớ

26 tháng 9 2017

ai thế

17 tháng 11 2018

help me

10 tháng 8 2020

Bài làm:

Ta có: \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)

\(A=\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\right)\)

\(A=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)

\(A=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{49.51}\right)\)

\(A=\frac{1}{12}-\frac{1}{4.49.51}< \frac{1}{12}\)

Vậy \(A< \frac{1}{12}\)

Từ đề bài suy ra\(4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\)

\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}=\frac{1}{3}-\frac{1}{49.51}< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{12}\left(đpcm\right)\)

\(\dfrac{12}{18}=\dfrac{24}{36}=\dfrac{72}{108}=\dfrac{12+24+72}{18+36+108}=\dfrac{12-24+72}{18-36+108}\)

26 tháng 9 2016

\(\left(\frac{\frac{17}{24}.9\frac{1}{2}-3\frac{1}{4}.\frac{17}{24}}{3\frac{1}{2}.2\frac{13}{36}+2\frac{13}{36}.2\frac{3}{4}}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{\frac{17}{24}.\left(9\frac{1}{2}-3\frac{1}{4}\right)}{2\frac{13}{36}.\left(3\frac{1}{2}+2\frac{3}{4}\right)}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{\frac{17}{24}.\left(\frac{19}{2}-\frac{13}{4}\right)}{\frac{85}{36}.\left(\frac{7}{2}+\frac{11}{4}\right)}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{\frac{17}{24}.\frac{19.2-13}{4}}{\frac{85}{36}.\frac{7.2+11}{4}}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{\frac{17}{24}.\frac{25}{4}}{\frac{85}{36}.\frac{25}{4}}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{17}{24}:\frac{85}{36}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{17}{24}.\frac{36}{85}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{3}{10}-\frac{1}{2}\right)^{-2}\)

\(=\left(\frac{3-5}{10}\right)^{-2}\)

\(=\left(\frac{-1}{5}\right)^{-2}\)

\(=\frac{1}{\left(-\frac{1}{5}\right)^2}=\frac{1}{\frac{\left(-1\right)^2}{5^2}}=\frac{1}{\frac{1}{25}}=25\)

11 tháng 8 2018

\(\frac{1}{4}+\frac{8}{9}\le\frac{x}{36}\le1-\left(\frac{3}{8}-\frac{5}{6}\right)\)

<=>  \(\frac{41}{36}\le\frac{x}{36}\le\frac{35}{24}\)

<=>  \(\frac{82}{72}\le\frac{2x}{72}\le\frac{105}{72}\)

<=>  \(82\le2x\le105\)

<=> \(41\le x\le52,5\)

Do  \(x\in N\)nên   \(x=\left\{x\in N|41\le x\le52,5\right\}\)

9 tháng 8 2017

2.

\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)

Vậy \(A< 3\)

b,

\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)

Vậy \(B< 2\)

10 tháng 8 2017

\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)

\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)

\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)

\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)

Vậy P < Q