Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng tỏ rằng : A=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+....+\frac{36}{25.27.29}< 3\)
Ta có:
\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)
\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)
\(\Rightarrow A=3-\frac{1}{87}\)
Vì \(3-\frac{1}{87}< 3.\)
\(\Rightarrow A< 3\left(đpcm\right).\)
Chúc bạn học tốt!
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{20}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\right)\)
\(A=1-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}-1}{2^{20}}\)
Vậy chọn câu a)
\(B=1-\frac{1}{2}\left(1+2\right)-\frac{1}{3}.\left(1+2+3\right)-\frac{1}{4}.\left(1+2+3+4\right)-...-\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(B=1-\frac{1}{2}.\left(1+2\right).2:2-\frac{1}{4}.\left(1+4\right).4:2-...-\frac{1}{20}.\left(1+20\right).20:2\)
\(B=1-3:2-5:2-...-21:2\)
\(B=1-3.\frac{1}{2}-5.\frac{1}{2}-...-21.\frac{1}{2}\)
\(B=1-\frac{1}{2}.\left(3+5+...+21\right)\)
Đặt C = 3 + 5 + ... + 21
Số số hạng của tổng C là: (21 - 3) : 2 + 1 = 10 (số)
=> C = (3 + 21) x 10 : 2 = 24 x 5 = 120
=> \(A=1-\frac{1}{2}.120\)
\(A=1-60=-59\)
Bài 1:
a) \(x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-\frac{20}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\cdot\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\)
\(x=1\)
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(2.\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 =18
x = 17
bài 2 ko bk lm, xl nha
\(a.\)
\(\frac{15}{33}+\frac{7}{20}+\frac{18}{33}+\frac{13}{20}\)
\(=\left(\frac{15}{33}+\frac{18}{33}\right)+\left(\frac{13}{20}+\frac{7}{20}\right)\)
\(=\frac{33}{33}+\frac{20}{20}\)
\(=1+1=2\)
\(b.\)
\(2\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{21}\right)\)
\(=\frac{5}{2}+\frac{4}{7}:\left(-\frac{8}{21}\right)\)
\(=\frac{5}{2}+\frac{4}{7}.\left(-\frac{21}{8}\right)\)
\(=\frac{5}{2}+\frac{1}{1}.\left(-\frac{3}{2}\right)\)
\(=\frac{5}{2}-\frac{3}{2}\)
\(=1\)
\(c.\)
\(\left(-\frac{1}{2}\right)^3+\frac{1}{2}:5\)
\(=-\frac{1}{8}+\frac{1}{2}.\frac{1}{5}\)
\(=-\frac{1}{8}+\frac{1}{10}\)
\(=-\frac{1}{40}\)
a) \(\frac{15}{33}+\frac{7}{20}+\frac{18}{33}+\frac{13}{20}=\left(\frac{15}{33}+\frac{18}{33}\right)+\left(\frac{7}{20}+\frac{13}{20}\right)\) = 1 + 1 = 2
b) \(2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{21}\right)=\frac{5}{2}+\frac{4}{7}:\left(\frac{-8}{21}\right)=\frac{5}{2}+\frac{-3}{2}\) = 1
c) \(\left(\frac{-1}{2}\right)\)3 + \(\frac{1}{2}\) : 5 = \(\frac{-1}{8}+\frac{1}{10}\) = \(\frac{-1}{40}\)
Chúc bạn học tốt!
\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+\frac{20}{5.7.9}+...+\frac{20}{25.27.29}\)
\(=5.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(=5.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(=5.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(=5.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(=5.\frac{260}{783}\)
\(=\frac{1300}{783}\)
Ta có:\(\frac{1}{\left(n-2\right)n}-\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)-\left(n-2\right)n}{\left(n-2\right)n\cdot n\left(n+2\right)}\)
\(=\frac{n\left(n+2-n+2\right)}{n\cdot\left(n-2\right)n\left(n+2\right)}=\frac{4}{\left(n-2\right)n\left(n+2\right)}\)
Áp dụng\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+...+\frac{20}{25.27.29}\)
\(=5\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(=5\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(=5\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(=5\cdot\frac{261-1}{783}=5\cdot\frac{260}{783}=\frac{1300}{783}\)