Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(15⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(15\right)\)
Mà \(n\in N\)
\(\Leftrightarrow\left[{}\begin{matrix}n-2=1\\n-2=15\\n-2=5\\n-2=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=3\\n=17\\n=7\\n=5\end{matrix}\right.\)
Vậy ............
b/ \(18⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(18\right)\)
Mà \(n\in N\)
\(n+1\) | \(1\) | \(2\) | \(3\) | \(6\) | \(9\) | \(18\) |
\(n\) | \(0\) | \(1\) | \(2\) | \(5\) | \(8\) | \(17\) |
đk \(n\in N\) | tm | tm | tm | tm | tm | tm |
Vậy .....
a) Ta có:
\(15⋮n-2\)
\(\Rightarrow n-2\in\left\{1;3;5;15\right\}\) ( Vì \(n\in N\))
+) \(n-2=1\Rightarrow n=3\)
+) \(n-2=3\Rightarrow n=5\)
+) \(n-2=5\Rightarrow n=7\)
+) \(n-2=15\Rightarrow n=17\)
Vậy \(n=3\) hoặc \(n=5\) hoặc \(n=7\) hoặc \(n=17\)
b) Ta có:
\(18⋮n+1\)
\(\Rightarrow n+1\in\left\{1;2;3;6;9;18\right\}\) ( Vì \(n\in N\))
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=2\Rightarrow n=1\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=6\Rightarrow n=5\)
+) \(n+1=9\Rightarrow n=8\)
+) \(n+1=18\Rightarrow n=17\)
Vậy \(n=0\) hoặc \(n=1\) hoặc \(n=2\) hoặc \(n=5\) hoặc \(n=8\) hoặc \(n=17\)
a/ Ta có ( n+ 10)( n+ 15)
\(=n^2+15n+10n+150\)
\(=n^2+25n+150\)
\(=n\left(n+25\right)+150\)
Xét 2 trường hợp chẵn, lẻ...Dễ thấy, n( n+ 25) luôn chẵn vs \(\forall n\in N\)
\(\Rightarrow n\left(n+25\right)+150\)luôn chẵn
Hay \(\left(n+10\right)\left(n+15\right)⋮2\)
P/s: Mọi người có thể làm cách khác nhanh hơn, dù sao mk cx đã cố gắng
a, \(\overline{357a}⋮2\Leftrightarrow a=0;2;4;6;8\) (thỏa mãn)
b, \(\overline{429a}⋮5\Leftrightarrow a=0;5\) (thỏa mãn)
c, \(\overline{3a51a}⋮9\Leftrightarrow\left(3+a+5+1+a\right)⋮9\)
<=> 9 + 2a \(⋮9\)
<=> 2a \(⋮9\)
Mà a là chữ số => a = 0; 9 (thỏa mãn)
d, \(\overline{4a231}⋮3\Leftrightarrow\left(4+a+2+3+1\right)⋮3\)
<=> 10 + a \(⋮3\)
<=> 9 + 1 + a \(⋮3\)
<=> 1 + a \(⋮3\)
Mà a là chữ số => a = 2; 5; 8 (thỏa mãn)
e, \(\overline{5a37a}⋮10\Rightarrow\overline{5a37a}⋮5\Rightarrow a=0;5\)
Mà \(\overline{5a37a}⋮2\Rightarrow a=0\) (thỏa mãn)
@Đỗ Hàn Thục Nhi
a) Ta xét các trường hợp:
+) Với n = 3k \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.
+) Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)
Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)
+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)
Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.
b) Tương tự bài trên.
a) Vì 9n \(⋮\)n và 18 \(⋮\)9 => 9n + 18 \(⋮\)9 (đpcm)
b) Vì 15n \(⋮\)5 và 6 không chia hết cho 5
=> 15n + 6 không chia hết cho 5 (đpcm)
Dấu không chia hết của olm bị sai nha bạn.