K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Ta có:

\(a+b⋮6\)

\(\Rightarrow a⋮6,b⋮6\)

\(\Rightarrow a^3⋮6,b^3⋮6\)

\(\Rightarrow a^3+b^3⋮6\left(đpcm\right)\)

Vậy \(a^3+b^3⋮6\)

28 tháng 9 2016

Ta có: a3=a.a.a

           b3=b.b.b

Ta thấy: a+b nên (a+b)(a+b)(a+b) chia hết cho 6

Vậy a3+b3 chia hết cho 6.

Tick mik nhiều nhe!hihi

19 tháng 10 2017

Câu a) có 2 trường hợp nha bn

TH1

n là số lẻ thì (n+10) là số lẻ và (n+17) là số chẵn => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) chia hết cho 2

TH2

n là số chẵn thì (n+10) là số chẵn và (n+17) là số lẻ => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) là chia hết cho 2

Vậy (n+10)(n+17) chia hết cho 2

Câu b)

Ta có \(a^3+b^3+c^3-a+b+c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

Mà \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\) là 3 số liên tiếp

Nên \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\)chia hết cho 2 và 3 => chia hết cho 6

Ta có \(a^3+b^3+c^3-a+b+c\)chia hết cho 6 mà \(a^3+b^3+c^3\)chia hết cho 6 

Vậy \(a+b+c\)chia hết cho 6

14 tháng 7 2017

+ Do a lẻ => a^2 lẻ => a^2 - 1 chẵn => a^2 - 1 chia hết cho 2 (1)

+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)

Nếu a = 3k + 1 thì a^2 = (3k + 1).(3k + 1) = (3k + 1).3k + (3k + 1) = 9k 2 + 3k + 3k + 1 chia 3 dư 1

Nếu a = 3k + 2 thì a^2 = (3k + 2).(3k + 2) = (3k + 2).3k + 2.(3k + 2) = 9k 2 + 6k + 6k + 4 chia 3 dư 2

=> a^2 chia 3 dư 1 => a^2 - 1 chia hết cho 3 (2)

Từ (1) và (2), do (2;3)=1 => a 2 - 1 chia hết cho 6

nhe

22 tháng 3 2015

bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)                                                                                                                                                                                                                       

2 tháng 8 2016

ban tran xuan quynh tra loi dung roi

17 tháng 7 2016

1) 

a) 1+5+5^2+5^3+....+5^101 

=(1+5)+(5^2+5^3)+....+(5^100+5^101)

=6+5^2.(1+5)+...+5^100(1+5)

=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6 

b) 2+2^2+2^3+...+2^2016

=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)

=2.31+2^6.31+...+2^2012.31 chia hết cho 31

Tương tự như câu a lên mk rút gọn 

2) còn bài a kì quá abc deg là sao nhỉ 

b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8 

bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại 

 

 

 

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

4 tháng 8 2016

2.

a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)

Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên

\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)

Vậy \(n\in\left\{1;2;3;6\right\}\)

c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)

Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên

\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)