K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=n^3-n-6n\)

\(=n\left(n-1\right)\left(n+1\right)-6n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

hay A chia hết cho 6

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

20 tháng 9 2018

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

Cristiano Ronaldo dễ thì làm con mệ nó đi chứ cứ ở đấy mà nói dễ thì đứa nào chả nói đc

21 tháng 11 2015

n3-n =n.(n2-1)=n.(n2-12) = n.(n-1).(n+1)

Vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên:

+)Tồn tại một số chi hết cho 2 =>n3-n chia hết cho 2 (1)

+)Tồn tại một số chia hết cho 3=>n3-n chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (2;3)=1 

=>n3-n chia hết cho (2.3)

=>n3-n chia hết cho 6 (đpcm)

19 tháng 10 2017

Câu a) có 2 trường hợp nha bn

TH1

n là số lẻ thì (n+10) là số lẻ và (n+17) là số chẵn => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) chia hết cho 2

TH2

n là số chẵn thì (n+10) là số chẵn và (n+17) là số lẻ => (n+10)(n+17) là số chẵn hay nói cách khác (n+10)(n+17) là chia hết cho 2

Vậy (n+10)(n+17) chia hết cho 2

Câu b)

Ta có \(a^3+b^3+c^3-a+b+c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

Mà \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\) là 3 số liên tiếp

Nên \(a\left(a-1\right)\left(a+1\right)\)và \(b\left(b-1\right)\left(b+1\right)\)và \(c\left(c-1\right)\left(c+1\right)\)chia hết cho 2 và 3 => chia hết cho 6

Ta có \(a^3+b^3+c^3-a+b+c\)chia hết cho 6 mà \(a^3+b^3+c^3\)chia hết cho 6 

Vậy \(a+b+c\)chia hết cho 6

19 tháng 8 2017

Vì A là tích ba nguyên liên tiếp nên chia hết cho 2 và 3, mà 2 và 3 là số nguyên tố cùng nhau nên chia hết cho 6.

Vì n;n-1;n-2 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n-2\right)⋮3!\)

hay \(A⋮6\)