Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1=x^3-1\) đpcm
b) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)\left[x\left(x^2+y^2\right)+y\left(x^2+y^2\right)\right]\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\) đpcm
a) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=x\left(x^2+x+1\right)\)\(-\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\)
Vậy \(\left(x-1\right)\left(x^2+x+1\right)\)\(=x^3-1\)(đpcm)
b) Ta có: \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x\left(x^3+x^2y+xy^2+y^3\right)\)\(-y\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
Vậy\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)\(=x^4-y^4\)(đpcm)
Bài làm :
\(\text{a) }\left(x-1\right)\left(x^2+x+1\right)\)
\(=x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1\)
=> Điều phải chứng minh
\(\text{b)}\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
=> Điều phải chứng minh
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
a, (x+y)(x2-xy+y2)(x3-y3)=(x3+y3)(x3-y3)=x6-y6
b, (x-2)(x+2)(x2+4)-(x2+1)(x2-1)=(x2-4)(x2+4)-(x4-1)=x4-16-x4+1=-15
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
Bài 1
Em xem lại đề nhé
a. Ta có VP=\(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x^3+xy^2-x^2y-y^3\right)\)
\(=VT\)
b.
1.\(\left(x-3\right)\left(x-2\right)-\left(x+10\right)\left(x-5\right)=0\)
\(\Leftrightarrow x^2-5x+6-\left(x^2+5x-50\right)=0\)
\(\Leftrightarrow-10x=-56\Rightarrow x=\frac{56}{10}\)
2.\(\left(2x-1\right)\left(3-x\right)+\left(x-2\right)\left(x+3\right)=\left(1-x\right)\left(x-2\right)\)
\(=-2x^2+7x-3+x^2+x-6=-x^2+3x-2\)
\(\Leftrightarrow5x=7\Leftrightarrow x=\frac{7}{5}\)
`a)(x-1)(x^2+x+1)`
`=x^3+x^2+x-x^2-x-1`
`=x^3-1`
`b)(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4`
a) VT`=(x-1)(x^2+x+1)`
`=x^3 +x^2 +x -x^2-x-1 `
`=x^3-1=` VP.
b) VT `=(x^3+x^2y+xy^2+y^3)(x-y)`
`=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4`
`=x^4-y^4=` VP.