Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)2-2(x+1)+1,01 = (x+1)2-2(x+1)+1 + 0,1 = x2 + 0,1 > 0 với mọi x
áp dụng hđt (a+b)2 ta có;
((x+1) +1)2 -1 +1,01 = (x+2)2 + 0,01 >0
(giải thì dễ nhưng bn có hiểu dc k mới là điều phải nghĩ, tui nói thật lòng k có ý xúc phạm)
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
* Ta có: \(A\left(x\right)=x^2-4x+5=\left(x^2-2\cdot x\cdot2+2^2\right)-2^2+5=\left(x-2\right)^2+1\ge1>0\)
Vậy \(A\left(x\right)=x^2-4x+5>0\)
b. \(B\left(x\right)=x^2+x+1=\left[x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy \(B\left(x\right)=x^2+x+1>0\)
c. \(C\left(x\right)=8x-x^2-17=-x^2+8x-17=-\left(x^2-8x\right)-17=-\left(x^2-2\cdot x\cdot4+4^2\right)+4^2-17=-\left(x-4\right)^2-1\le-1< 0\)
Vậy \(C\left(x\right)=8x-x^2-17< 0\)
Bài 1: Ta có: \(53^2-53\cdot6+3^2\)
\(=53^2-2\cdot53\cdot3+3^2\)
\(=\left(53-3\right)^2\)
\(=50^2=2500\)
Bài 2: Ta có: \(-x^2+x-33\)
\(=-\left(x^2-x+33\right)\)
\(=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{131}{4}\right)\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{131}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{131}{4}\le\frac{131}{4}< 0\forall x\)
hay \(-x^2+x-33< 0\forall x\)(đpcm)
Bài 3: Ta có: \(x^2+4x+33\)
\(=x^2+4x+4+29\)
\(=\left(x+2\right)^2+29\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+29\ge29>0\forall x\)
hay \(x^2+4x+33>0\forall x\)
Bài 4: Ta có: \(B=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge-16\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức \(B=x^2+8x\) là -16 khi x=-4
Bài 5: Tìm x
Ta có: \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-\left(25x^2-9\right)-30=0\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9-30=0\)
\(\Leftrightarrow10x-20=0\)
\(\Leftrightarrow10x=20\)
hay x=2
Vậy: x=2
4x2 - 8x + 5 >0
(2x)2 - 2. 2x.2 + 22 +1
(2x-2)2+1
Vì ( 2x-2) \(\ge\)0 mọi giá trị x => ( 2x-2)+1>0 với mọi giá trị x
Vậy 4x2 - 8x + 5 > 0 với mọi giá trị của x
ta có 4x^2 - 8x + 5 = (2x)^2 - 2*2x *2 + 4 +1 = (2x - 2)^2 + 1
do (2x - 2)^2 >= 0 vs mọi x nên (2x - 2)^2 + 1 > 0 với mọi x