K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2024

Các số lẻ ko chia hết cho 3 có dạng \(6k+1\) hoặc \(6k+5\)

TH1: m, n cùng có dạng \(6k+1\Rightarrow\left\{{}\begin{matrix}m=6a+1\\n=6b+1\end{matrix}\right.\) với a;b nguyên

\(\Rightarrow n^2-m^2=\left(6a+1\right)^2-\left(6b+1\right)^2=12\left(a-b\right)\left(3\left(a+b\right)+1\right)\)

- Với a;b cùng tính chẵn lẻ \(\Rightarrow a-b\) chẵn \(\Rightarrow a-b\) chia hết cho 2 \(\Rightarrow12\left(a-b\right)⋮24\)

\(\Rightarrow n^2-m^2⋮24\)

- Với a;b khác tính chẵn lẻ \(\Rightarrow3\left(a+b\right)\) lẻ \(\Rightarrow3\left(a+b\right)+1\) chẵn \(\Rightarrow12\left(3\left(a+b\right)+1\right)⋮24\)

\(\Rightarrow n^2-m^2⋮24\)

TH2: n;m cùng dạng \(6k+5\) hay \(\left\{{}\begin{matrix}n=6a+5\\m=6b+5\end{matrix}\right.\)

\(n^2-m^2=12\left(a-b\right)\left[3\left(a+b\right)+5\right]\)

Tương tự như trên:

a, b cùng chẵn lẻ thì \(a-b\) chẵn; a, b khác tính chẵn lẻ thì \(3\left(a+b\right)+5\) chẵn

TH3: 1 số có dạng \(6k+1\), 1 số có dạng \(6k+5\)

\(\Rightarrow\left|n^2-m^2\right|=\left|\left(6a+1\right)^2-\left(6b+5\right)^2\right|=12\left|\left(a-b\right)\left[3\left(a+b\right)+1\right]-2\left(2b+1\right)\right|\)

a,b cùng chẵn lẻ thì \(a-b\) chẵn; a,b khác tính chẵn lẻ thì \(3\left(a+b\right)+1\) chẵn nên \(\left(a-b\right)\left[3\left(a+b\right)+1\right]-2\left(2b+1\right)\) luôn chẵn

29 tháng 7 2016

242+1=(24+1)(24-1)

25.23

25chia het cho 25 

suy ra 25.23 chia hetcho 25

29 tháng 7 2016

ma cho mk hoi n o dau vay

8 tháng 8 2016

\(A=3^9-8=\left(3^3\right)^3-2^3=27^3-2^3=\left(27-2\right)\left(27^2+27\times2+2^2\right)=25\times\left(27^2+27\times2+2^2\right)\)

Vậy A chia hết cho 25 (đpcm)

***

\(B=\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2+n-2\right)\left(n+2-n+2\right)=2n\times4=8n\)

Vậy B chia hết cho 8 (đpcm)

***

\(C=\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7+n-5\right)\left(n+7-n+5\right)=\left(2n+2\right)\times12=12\times2\times\left(n+1\right)=24\times\left(n+1\right)\)

Vậy C chia hết cho 24 (đpcm)

***

Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3

\(D=\left(2k+1\right)^2-\left(2k+3\right)^2=\left(2k+1+2k+3\right)\left(2k+1-2k-3\right)=\left(4k+4\right)\times\left(-2\right)=\left(-2\right)\times4\times\left(k+1\right)=-8\times\left(k+1\right)\)Vậy D chia hết cho 8 (dpcm)

17 tháng 9 2019

a) thay 2k+1 vào biểu thức ta có

a)=4k^2+4k+1+8k+4+3

=4k(k+1) + 8k +8

có: k(k+1) là 2 số nguyên liên tiếp => chia hết cho 2 => 4k(k+1) chia hết cho 8

có: 8k;8 chia hết 8

=>n^2+4n+3 chia hết cho 8

18 tháng 9 2019

b.Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

27 tháng 7 2018

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n lẻ => n + 3 chẵn ; n + 1 chẵn

Mà n + 1 hoặc n + 3 chia hết cho 2 vì 2 số đều chẵn(1)

Lại có (n + 1)(n + 3) chia hết cho 4 vì đây là tích của 2 số chẵn liên tiếp(2)

Từ (1) và (2) \(\Rightarrow\left(n+1\right)\left(n+3\right)⋮\left(2.4\right)=8\)

Vậy \(n^2+4n+3⋮8\)<=> n lẻ

27 tháng 7 2018

ta có n\(^2\)+4n+3

=n\(^2\)+n+3n+3

=n(n+1)+3(n+1)

=(n+3)(n+1)

Vì n lẻ => n + 3 chẵn ; n + 1 chẵn

Mà n + 1 hoặc n + 3 chia hết cho 2 vì 2 số đều chẵn(1)

Lại có (n + 1)(n + 3) chia hết cho 4 vì đây là tích của 2 số chẵn liên tiếp(2)

Từ (1) và (2) ⇒(n+1)(n+3)⋮(2.4)=8

Vậy n\(^2\)+4n+3⋮8<=> n lẻ

15 tháng 9 2016

sao ban go duoc sao luy thua vay 

15 tháng 9 2016

4mn(m2 - n2) = 4.(m-n)mn(m+n) h này chia hết cho 4 và 6 nên chia hết cho 24

15 tháng 9 2016

Ta có: \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=n\left[m\left(m^2-1\right)-1\left\{n^2-1\right\}\right]\)

\(=m\left(m-1\right)\left(m+1\right)+n\left(n-1\right)\left(n+1\right)⋮6\)

Mà: \(4mn\left(m^2-n^2\right)⋮4\)

Vậy: \(4mn\left(m^2-n^2\right)⋮4.6=24\)

 

 

18 tháng 7 2017

Ta có: A =n^12-n^8-n^4+1 
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2 
=(n^4+1)[(n^2+1)(n^2-1)]^2 
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1) 
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64 
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8 
Do đó : A chia hết cho 64*8=512

18 tháng 7 2017

a, Ta có m là số nguyên chẵn

=> m có dạng 2k 

=> m3+20m=(2k)3+20.2k

=8k3+40k=8k(k2+5)

Cần chứng minh k(k2+5) chia hết cho 6

Nếu k chẵn => k(k2+5) chia hết cho 2

Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2

Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3

Nếu k chia 3 dư 1 hoặc dư 2 thì 

k có dạng 3k+1 hoặc 3k+2

=> (3k+1)[(3k+1)2+5)]

=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3 

=> k(k2+5) chia hết cho 3

Nếu  k chia 3 dư 2 

=> k có dạng 3k +2

=> k(k2+5)=(3k+2)[(3k+2)2+5]

=(3k+2)(9k2+12k+9)

Vì 9k2+12k +9 chia hết cho 3

=> k(k^2+5) chia hết cho 3

=> k(k2+5) chia hết cho 6

=> 8k(k2+5) chia hết cho 48

=> dpcm

18 tháng 9 2019

Ta có: \(n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\text{ (1)}\)

\(\text{Vì n = 2k + 1 (số lẻ) nên }\hept{\begin{cases}n+3=2k+1+3=2k+4\\n-1=2k+1-1=2k\\n+1=2k+1+1=2k+2\end{cases}}\)

\(\text{(1) = }\left(2k+4\right)\left(2k\right)\left(2k+2\right)\)

\(=2.\left(k+2\right).2k.2.\left(k+1\right)\)

\(=8k.\left(k+2\right)\left(k+1\right)\)

\(\text{Ta thấy }8k\left(k+1\right)\left(k+2\right)\text{chia hết cho 2 và chia hết cho 8}\)

\(\text{Nên }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 16 (8 x 2 =16) (2)}\)

\(\text{Mà }k\left(k+1\right)\left(k+2\right)\text{ là tích của 3 số tự nhiện liên tiếp }\)

\(\text{Nên }k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3}\)

\(\text{Hay }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3 (3)}\)

\(\text{Từ (2) và (3) suy ra: }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 48 (16 x 3 = 48)}\)

                                \(\text{hay }n^3+3n^2-n-3\text{ chia hết cho 48 }\left(\text{ĐPCM}\right)\)

18 tháng 9 2019

Ta có:

 \(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Với n=2k+1. Do đó ta có:

\(n^3+3n^2-n-3=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)

\(=8\left(k+2\right)\left(k+1\right)k\)

Vì \(k;\left(k+1\right)\)là hai số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)

Vì \(k;\left(k+1\right);\left(k+2\right)\)là ba số tự nhiên liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\)

mà (2; 3) =1

=> \(k\left(k+1\right)\left(k+2\right)⋮6\)

=> \(8k\left(k+1\right)\left(k+2\right)⋮48\)