Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^2+4xy+2y^2-22y+173\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)
\(A=\left(x+y\right)^2+\left(y-11\right)^2+52\)
\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\) với mọi x;y => \(A=\left(x+y\right)^2+\left(y-11\right)^2+52\ge52\)
=>minA=52 <=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-11=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-11\\y=11\end{cases}}\)
Vậy min=52 khi x=-11 và y=11
x^2 + 14x + y^2 - 2y + 7
( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43
( x-7)^2 + ( y-1)^2 - 43
Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
a.A= \(x^2+10x+27\)
\(=x^2+2.x.5+25+2\)
\(\left(x+5\right)^2+2\ge2\forall x\)
Dấu " = " xảy ra <=> x + 5 = 0
=> x = -5
Vậy Min A = 2 <=> x = -5
b.B = \(x^2-12x+37\)
\(=x^2-2.x.6+36+1\)
\(=\left(x-6\right)^2+1\ge1\forall x\)
Dấu " = " xảy ra <=> x - 6 = 0
=> x = 6
Vậy Min B = 1 <=> x = 6
c. \(x^2+x+7\)
\(=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{27}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)
Dấu " =" xảy ra <=> \(x+\dfrac{1}{2}=0\)
\(x=\dfrac{-1}{2}\)
Vậy Min C = \(\dfrac{27}{4}\Leftrightarrow x=\dfrac{-1}{2}\)
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + (10x - 22y) + 25 + y2 + 3
= (x - 2y)2 + 10(x - 2y) + 25 + y2 + 3
= (x - 2y + 5)2 + y2 + 3 \(\ge\)3
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2y+5=0\\y=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=5\\y=0\end{cases}}\)
Vậy Min C = 3 \(\Leftrightarrow\)x = 5; y = 0
C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27
= ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2
= ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
a/ \(4a^2+4a+2=\left(4a^2+4a+1\right)+1=\left(2a+1\right)^2+1\ge1\)
Suy ra BT đạt giá trị nhỏ nhất bằng 1 tại a = -1/2
b/ \(x^2-4xy+5y^2+10x-22y=\left(x-2y+5\right)^2+\left(y-1\right)^2-26\ge-26\)
Suy ra BT đạt giá trị nhỏ nhất bằng -26 khi y = 1 , x = -3
\(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)
\(\Rightarrow dpcm\)
a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)
Vì \(\left(x-2y\right)^2\ge0\forall x,y\); \(\left(y+4\right)^2\ge0\forall y\); \(2>0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)
\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)
\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )