K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

\(x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}=10+6x\)

Thay vào -> dpcm

4 tháng 10 2019

\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}\)

\(+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)

\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\Leftrightarrow x^3=10+6x\)

\(\Leftrightarrow x^3-6x-10=0\)

\(\Rightarrow\) Đpcm

Chúc bạn học tốt !!!

27 tháng 8 2018

\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)

\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\)\(\Leftrightarrow x^3=10+6x\)

\(\Leftrightarrow x^3-6x-10=0\)

Hay ta co DPCM

NV
1 tháng 9 2020

\(x^3=76+3\sqrt[3]{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right)}\left(\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{38+17\sqrt{5}}\right)\)

\(\Leftrightarrow x^3=76-3x\)

\(\Leftrightarrow x^3+3x-76=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+19\right)=0\)

\(\Leftrightarrow x=4\)

\(\Rightarrow x^3-3x^2-2x-8=0\)

17 tháng 12 2021

đố anh làm được đấy

17 tháng 12 2021

Đáp án :

\(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqrt{38+17}.\sqrt{5}\)

\(=x_0=38-17\sqrt{5}+38+17\sqrt{5}-3^3\sqrt{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right).x_0}\)

\(=76-3^3\sqrt{-1}.x_0=76+3x_0\)

\(=x_0^3\)\(-3x_0-76=0\)

\(=\left(x_0-4\right)\left(x_0^2+4x_0+19\right)=0\)

\(=x_0=4\)

Thay x0 = 4 vào phương trình x3 - 3x2 - 2x - 8 = 0 ta có đẳng thức đúng là:

    43 - 3.42 - 2.4 - 8 = 0

    Vậy x0 là nghiệm của phương trình x3 - 3x2 - 2x - 8 = 0

13 tháng 12 2018

\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Rightarrow x^3=5-\sqrt{17}+5+\sqrt{17}+3\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}x\)

\(\Rightarrow x^3=10+3\sqrt[3]{25-17}x\)

\(\Rightarrow x^3=10+3\sqrt[3]{8}x\)

\(\Rightarrow x^3=10+3.2x\)

\(\Leftrightarrow x^3-6x-10=0\)

Học toán vui vẻ!