Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}=10+6x\)
Thay vào -> dpcm
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}\)
\(+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\Leftrightarrow x^3=10+6x\)
\(\Leftrightarrow x^3-6x-10=0\)
\(\Rightarrow\) Đpcm
Chúc bạn học tốt !!!
\(x^3=76+3\sqrt[3]{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right)}\left(\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{38+17\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=76-3x\)
\(\Leftrightarrow x^3+3x-76=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+19\right)=0\)
\(\Leftrightarrow x=4\)
\(\Rightarrow x^3-3x^2-2x-8=0\)
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Rightarrow x^3=5-\sqrt{17}+5+\sqrt{17}+3\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}x\)
\(\Rightarrow x^3=10+3\sqrt[3]{25-17}x\)
\(\Rightarrow x^3=10+3\sqrt[3]{8}x\)
\(\Rightarrow x^3=10+3.2x\)
\(\Leftrightarrow x^3-6x-10=0\)
Học toán vui vẻ!
Đáp án :
\(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqrt{38+17}.\sqrt{5}\)
\(=x_0=38-17\sqrt{5}+38+17\sqrt{5}-3^3\sqrt{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right).x_0}\)
\(=76-3^3\sqrt{-1}.x_0=76+3x_0\)
\(=x_0^3\)\(-3x_0-76=0\)
\(=\left(x_0-4\right)\left(x_0^2+4x_0+19\right)=0\)
\(=x_0=4\)
Thay x0 = 4 vào phương trình x3 - 3x2 - 2x - 8 = 0 ta có đẳng thức đúng là:
43 - 3.42 - 2.4 - 8 = 0
Vậy x0 là nghiệm của phương trình x3 - 3x2 - 2x - 8 = 0
a) ĐKXĐ: 1\(\le x\le7\)
phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)
Vậy S={5,4} là tập nghiệm của phương trình
b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)
=> z^2-y^2=x^2-3x+2
pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0
đến đó tự làm tự đặt dkxd
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\)\(\Leftrightarrow x^3=10+6x\)
\(\Leftrightarrow x^3-6x-10=0\)
Hay ta co DPCM