Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án :
\(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqrt{38+17}.\sqrt{5}\)
\(=x_0=38-17\sqrt{5}+38+17\sqrt{5}-3^3\sqrt{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right).x_0}\)
\(=76-3^3\sqrt{-1}.x_0=76+3x_0\)
\(=x_0^3\)\(-3x_0-76=0\)
\(=\left(x_0-4\right)\left(x_0^2+4x_0+19\right)=0\)
\(=x_0=4\)
Thay x0 = 4 vào phương trình x3 - 3x2 - 2x - 8 = 0 ta có đẳng thức đúng là:
43 - 3.42 - 2.4 - 8 = 0
Vậy x0 là nghiệm của phương trình x3 - 3x2 - 2x - 8 = 0
\(x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}=10+6x\)
Thay vào -> dpcm
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}\)
\(+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\Leftrightarrow x^3=10+6x\)
\(\Leftrightarrow x^3-6x-10=0\)
\(\Rightarrow\) Đpcm
Chúc bạn học tốt !!!
cho x = \(\sqrt[3]{38+17\sqrt{5}}+\sqrt[3]{38-17\sqrt{5}}\)
Tính C= \(\left(x^3+3x+1935\right)2018\)
\(x=\sqrt[3]{38+17\sqrt{5}}+\sqrt[3]{38-17\sqrt{5}}=\sqrt[3]{5\sqrt{5}+3.5.2+3.\sqrt{5}.4+8}+\sqrt[3]{8-3.4.\sqrt{5}+3.2.5-5\sqrt{5}}=\sqrt[3]{\left(2+\sqrt{5}\right)^3}+\sqrt[3]{\left(2-\sqrt{5}\right)^3}=2+\sqrt{5}+2-\sqrt{5}=4\)Vậy C=(43+3.4+1935)2018=2011.2018=4058198
\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)
\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\)\(\Leftrightarrow x^3=10+6x\)
\(\Leftrightarrow x^3-6x-10=0\)
Hay ta co DPCM
\(x=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\dfrac{3}{3}=1\)
\(A=\left(3\cdot1+8\cdot1+2\right)^{2018}=13^{2018}\)
\(x^3=76+3\sqrt[3]{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right)}\left(\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{38+17\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=76-3x\)
\(\Leftrightarrow x^3+3x-76=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+19\right)=0\)
\(\Leftrightarrow x=4\)
\(\Rightarrow x^3-3x^2-2x-8=0\)