K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Với mọi m;n;p;q dương nhé bạn!

Áp dụng bất đẳng thức AM-GM cho 2 số dương:

\(\dfrac{m^2}{4}+n^2\ge2\sqrt{\dfrac{m^2n^2}{4}}=mn\)

\(\)\(\dfrac{m^2}{4}+p^2\ge2\sqrt{\dfrac{m^2p^2}{4}}=mp\)

\(\dfrac{m^2}{4}+q^2\ge2\sqrt{\dfrac{m^2q^2}{4}}=mq\)

\(\dfrac{m^2}{4}+1\ge2\sqrt{\dfrac{m^2}{4}}=m\)

Cộng theo vế: \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)

2 tháng 5 2017

Ta có:

m2+n2+p2+q2+1-mn+mp+mq+m

\(=\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\)

\(=\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\)

\(\left(\dfrac{m}{2}-n\right)^2\ge0;\left(\dfrac{m}{2}-p\right)^2\ge0;\left(\dfrac{m}{2}-q\right)^2\ge0;\left(\dfrac{m}{2}-1\right)^2\ge0\)

=> \(\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\ge0\)

<=> m2+n2+p2+q2+1-mn+mp+mq+m \(\ge0\)

<=> m2+n2+p2+q2+1\(\ge\) mn+mp+mq+m

<=> m2+n2+p2+q2+1\(\ge\) m(n+p+q+1)

Vậy m2+n2+p2+q2+1\(\ge\) m(n+p+q+1) với mọi m, n, p, q

3 tháng 5 2017

Giải:

Ta có:

\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)

\(\Leftrightarrow\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2\) \(+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\) \(\ge0\) (luôn đúng)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{2}-n=0\\\dfrac{m}{2}-p=0\\\dfrac{m}{2}-q=0\\\dfrac{m}{2}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{m}{2}\\p=\dfrac{m}{2}\\q=\dfrac{m}{2}\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=p=q=1\end{matrix}\right.\)

Vậy \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\) (Đpcm)

DD
15 tháng 3 2021

\(m^2+n^2+\frac{1}{4}\ge2mn+m-n\)

\(\Leftrightarrow m^2+n^2+\frac{1}{4}-2mn-m+n\ge0\)

\(\Leftrightarrow m^2+n^2+\left(\frac{1}{2}\right)^2-2mn-2.\frac{1}{2}m+2.\frac{1}{2}n\ge0\)

\(\Leftrightarrow\left(n-m+\frac{1}{2}\right)^2\ge0\)

Biểu thức cuối luôn đúng mà ta biến đổi tương đương nên ta có đpcm. 

15 tháng 3 2021

m2 + n2 + 1/4 ≥ 2mn + m - n 

<=> 4m2 + 4n2 + 1 ≥ 8mn + 4m - 4n

<=> 4m2 + 4n2 + 1 - 8mn + 4m - 4n ≥ 0

<=> ( 2m - 2n + 1 )2 ≥ 0 ( đúng )

Vậy ta có đpcm

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

29 tháng 12 2019

Câu 1: Sửa đề là

\(x^2+2x+4^n-2^{n+1}+2=0\)

\(\Rightarrow x^2+2x+2^{2n}-2^{n+1}+1+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(2^{2n}-2^{n+1}+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(2^{2n}-2.2^n+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(2^n-1\right)^2\ge0\end{matrix}\right.\forall x,n.\)

\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2\ge0\) \(\forall x,n.\)

\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(2^n-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+1=0\\2^n-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\2^n=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-1\\2^n=2^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\n=0\end{matrix}\right.\)

Vậy \(\left(x;n\right)\in\left\{-1;0\right\}.\)

Chúc bạn học tốt!

NV
23 tháng 3 2019

Câu 1:

Câu hỏi của pham minh quang - Toán lớp 6 | Học trực tuyến

Câu 2:

\(\left(y+2\right)x^{2019}=y^2+2x+1\)

Nhận thấy \(y=-2\) không phải nghiệm nên ta có:

\(x^{2019}=\frac{y^2+2y+1}{y+2}=y+\frac{1}{y+2}\)

Do \(x\) nguyên \(\Rightarrow x^{2019}\) nguyên \(\Rightarrow\frac{1}{y+2}\) nguyên

\(\Rightarrow y+2=Ư\left(1\right)=\left\{-1;1\right\}\)

\(y+2=-1\Rightarrow y=-3\Rightarrow x^{2019}=-3\) (ko có x nguyên thỏa mãn)

\(y+2=1\Rightarrow y=-1\Rightarrow x^{2019}=-1\Rightarrow x=-1\)

Vậy nghiệm nguyên của pt là \(\left(x;y\right)=\left(-1;-1\right)\)

15 tháng 9 2016

sao ban go duoc sao luy thua vay 

15 tháng 9 2016

4mn(m2 - n2) = 4.(m-n)mn(m+n) h này chia hết cho 4 và 6 nên chia hết cho 24

15 tháng 9 2016

Ta có: \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=n\left[m\left(m^2-1\right)-1\left\{n^2-1\right\}\right]\)

\(=m\left(m-1\right)\left(m+1\right)+n\left(n-1\right)\left(n+1\right)⋮6\)

Mà: \(4mn\left(m^2-n^2\right)⋮4\)

Vậy: \(4mn\left(m^2-n^2\right)⋮4.6=24\)